PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of the model of an asynchronous traction motor of an electric locomotive by taking into account power losses

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Udoskonalenie modelu asynchronicznego silnika trakcyjnego lokomotywy elektrycznej poprzez uwzględnienie strat mocy
Języki publikacji
EN
Abstrakty
EN
The paper proposes an improved model of an asynchronous traction motor, taking into account magnetic losses in the steel of the motor, as a function of time, based on the equations of specific losses. When conducting research, a mathematical model of an asynchronous motor, made in the MATLab software environment, was used. Based on the simulation results, the value of average magnetic losses and time diagrams of magnetic losses were obtained for the nominal operating mode of the motor. The results obtained are compared with the passport data of the motor.
PL
W pracy zaproponowano udoskonalony model asynchronicznego silnika trakcyjnego uwzględniający straty magnetyczne w stali silnikowej w funkcji czasu, oparty na równaniach strat właściwych. W badaniach wykorzystano model matematyczny silnika indukcyjnego, wykonany w środowisku oprogramowania MATLab. Na podstawie wyników symulacji uzyskuje się wartości średnich strat magnetycznych oraz wykresy czasowe strat magnetycznych dla nominalnego trybu pracy silnika, a uzyskane wyniki porównuje się z danymi paszportowymi silnika.
Rocznik
Strony
1--10
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • State University of Infrastructure and Technologies, Department of Electromechanics and Rolling Stock of Railways
  • National Technical University «Kharkiv Polytechnic Institute», Department of Electric Transport and Locomotive Motorering
  • State University of Infrastructure and Technologies, Department of Electromechanics and Rolling Stock of Railways
  • State University of Infrastructure and Technologies, Department of Electromechanics and Rolling Stock of Railways
  • State University of Infrastructure and Technologies, Department of Electromechanics and Rolling Stock of Railways
Bibliografia
  • [1] Omelchenko, E., Tanich, V., Lymar, A. “Skidding Research of a Traction Asynchronous Electric Drive in the Electric Locomotiveon a Dynamic Model”, In 2021 International Ural Conference on Electrical Power Motorering (UralCon), pp. 513-518, IEEE, 2021.
  • [2] Titova, T. S., Evstaf’ev, A. M., Pugachev, A. A. “Improving the energy efficiency of electric drives for auxiliary units of traction rolling stock”, In Journal of Physics: Conference Series, vol. 2131, no. 4, p. 042085, IOP Publishing, 2021.
  • [3] Wu, Z., Gao, C., Tang, T. “An Optimal Train Speed Profile Planning Method for Induction Motor Traction System”, Energies, vol. 14, no 16, p. 5153, 2021.
  • [4] Kumar, Y.S., Poddar, G. “Medium-voltage vector control induction motor drive at zero frequency using modular multilevel converter”, IEEE Transactions on Industrial Electronics, vol. 65 no 1, pp. 125-132, 2017.
  • [5] Hassan, M.M.; Shaikh, M.S.; Jadoon, H.U.K.; Atif, M.R.; Sardar, M. U. “Dynamic Modeling and Vector Control of AC Induction Traction Motor in China Railway”, Sukkur IBA Journal of Emerging Technologies, vol. 3 no 2, pp. 115-125, 2020.
  • [6] Wang, H., Liu, Y.C., Ge, X. “Sliding-mode observer-based speed-sensorless vector control of linear induction motor with a parallel secondary resistance online identification”, IET Electric Power Applications, vol. 12, no 8, pp. 1215-1224, 2018.
  • [7] Lee, J.K., Kim, J.W., Park, B.G. “Fast Anti-Slip Traction Control for Electric Vehicles Based on Direct Torque Control with Load Torque Observer of Traction Motor”, In 2021 IEEE Transportation Electrification Conference & Expo (ITEC), pp. 321-326, IEEE, 2021.
  • [8] Aissa, B., Hamza, T., Yacine, G., Mohamed, N. “Impact of sensorless neural direct torque control in a fuel cell tractionsystem”, International Journal of Electrical and Computer Motorering (IJECE), vol. 11, no 4, pp. 2725-2732, 2021.
  • [9] Karlovsky, P., Lettl, J. “Induction motor drive direct torque control and predictive torque control comparison based on switching pattern analysis”, Energies, vol. 11, no 7, p. 1793, 2018.
  • [10] Butko, T., Babanin, A., Gorobchenko, A., “Rationale for the type of the membership function of fuzzy parameters of locomotive intelligent control systems”, Eastern-European Journal of Enterprise Technologies, vol. 1, no 3, pp. 73, 2015.
  • [11] Li, W., Xu, Z., Zhang, Y. “Induction motor control system based on FOC algorithm”, In 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pp. 1544-1548, IEEE, 2019.
  • [12] Liu, Z., Wu, J., Hao, L. “Coordinated and fault-tolerant control of tandem 15-phase induction motors in ship propulsion system”, IET Electric Power Applications, vol. 12, no 1, pp. 91-97, 2018.
  • [13] Cherniy, S. P., Gudim, A. S., Buzikayeva, A. V. “Fuzzy multi-cascade AC drive control system”, In 2018 International Multi-Conference on Industrial Motorering and Modern Technologies (FarEastCon), pp. 1-4, IEEE, 2018.
  • [14] Liao, Z., Zhao, Q., Zhang, X., Chen, L. “Research on SpeedSensorless Vector Control System of Asynchronous Motor Based on MRAS”, In MATEC Web of Conferences, vol. 160, p. 02006, EDP Sciences, 2018.
  • [15] Yang, Z., Zhang, D., Sun, X., Ye, X. “Adaptive exponentialsliding mode control for a bearingless induction motor based ona disturbance observer”, IEEE Access, vol. 6, pp. 35425-35434, 2018.
  • [16] Im, N. K., Nguyen, V. S. “Artificial neural network controller for automatic ship berthing using head-up coordinate system”, International Journal of Naval Architecture and Ocean Motorering, vol. 10, no 3, pp. 235-249, 2018.
  • [17] Kumar, P., Isha, T. B. “FEM based electromagnetic signature analysis of winding inter-turn short-circuit fault in inverter fed induction motor”, CES Transactions on Electrical Machines and Systems, vol. 3, no 3, pp. 309-315, 2019.
  • [18] Goolak, S., Gerlici, J., Gubarevych, O., Lack, T., Pustovetov, M. “Imitation Modeling of an Inter-Turn Short Circuit of an Asynchronous Motor Stator Winding for Diagnostics of Auxiliary Electric Drives of Transport Infrastructure”, Communications - Scientific Letters of the University of Zilina, vol. 23, no 2, pp. C65-C74, 2021.
  • [19] Gubarevych, O., Goolak, S., Daki, O., Tryshyn, V. “Investigation of Turn-To-Turn Closures of Stator Windings to Improve the Diagnostics System for Induction Motors”, Regional energy problems, vol. 2, no 50, pp. 10-24, 2021.
  • [20] Fortes, M. Z., De Sousa, L. B., Quintanilha, G. M., Santana, C. E., de Oliveira Henriques, H. “Analysis of the Effects of Voltage Unbalance on Three-Phase Induction Motors”, International Journal of Energy and Sustainable Development, vol. 3, no 2, pp. 29-37, 2018.
  • [21] Zhang, D., An, R., Wu, T. “Effect of voltage unbalance anddistortion on the loss characteristics of three-phase cage induction motor”, IET Electric Power Applications, vol. 12, no 2, pp. 264-270, 2018.
  • [22] Santos, V. S., Eras, J. J. C., Gutiérrez, A. S., Ulloa, M. J. C. “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring”, Measurement, vol. 136, pp. 237-247, 2019.
  • [23] Goolak, S., Tkachenko, V., Bureika, G., Vaičiūnas, G., “Method of spectral analysis of traction current of AC electric locomotives”, Transport, vol. 35, no 6, pp. 658-668, 2020.
  • [24] Pustovetov, M. “Approach to implementation on a computer mathematical model of induction motor suitable for use as an integral part of models of electrotechnical complexes and systems”, In Modeling. Theory, methods and means, pp. 332-345, 2016.
  • [25] Goolak, S., Liubarskyi, B., Sapronova, S., Tkachenko, V., Riabov, Ie., Glebova, M. “Improving a Model of the Induction Traction Motor Operation Involving Non-Symmetric Stator Windings”, Eastern-European Journal of Enterprise Technologies, vol. 4, no 8(112), рр. 45–58, 2021.
  • [26] Syvokobylenko, V. F., Tkachenko, S. N. “The mathematical model of an induction machine in terms of the skin effect in the rotor and the saturation of magnetic circuits”, In 2018 X International Conference on Electrical Power Drive Systems (ICEPDS), pp. 1-5, IEEE, 2018.
  • [27] Iegorov, O., Iegorova, O., Potryvaieva, N., Zaluzhna, H. “The Traction Induction Motor Magnetic Circuit Saturation Influence on the Variable Electric Drive Energy Efficiency”, In 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES), pp. 1-5, IEEE, 2021.
  • [28] Zagirnyak, M., Chenchevoi, V., Ogar, V., Chencheva, O., Yatsiuk, R. “Refining induction machine characteristics at highsaturation of steel”, Przeglad Elektrotechniczny, vol. 96, no 11, pp. 119-123, 2020.
  • [29] Ghoggal, A., Hamida, A. H. “Transient and steady-state modelling of healthy and eccentric induction motors consideringthe main and third harmonic saturation factors”, IET Electric Power Applications, vol. 13, no 7, pp. 901-913, 2019.
  • [30] Beleiu, H. G., Maier, V., Pavel, S. G., Birou, I., Pică, C. S., Dărab, P. C. “Harmonics consequences on drive systems with induction motor”, Applied Sciences, vol. 10 no 4, pp. 1528, 2020.
  • [31] Xiao, X., Xu, W., Ge, J., Shangguan, Y. “Performance Analysis of Linear Induction Motors Considering Space and Time Harmonics”, In 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA), pp. 1-6, IEEE, 2021.
  • [32] Frolov, Y. M., Shelyakin, V. P., Sitnikov, N. V., Goremykin, S. A., Tonn, D. A. “Modeling an induction motor based on the equations of a generalized electric machine, taking into account the saturation of the magnetic circuit”, In E3S Web of Conferences, vol. 178, p. 01011, EDP Sciences, 2020.
  • [33] Choi, S.-B., Wereley, N.M., Li, W. “Controllable Electrorheological and Magnetorheological Materials”, Frontiers Media SA: Laussane, Switzerland, 164 p., 2019.
  • [34] Zagirnyak, M., Prus, V., Rodkin, D., Zachepa, Y., Chenchevoi, V. “A refined method for the calculation of steel losses at alternating current”, Archives of electrical motorering, vol. 68 no 2, pp. 295—308, 2019.
  • [35] Zagirnyak, M., Ogar, V., Chenchevoi, V., Yatsiuk, R. (2022), "The determination of induction motor losses in steel taking into account its saturation", COMPEL - The international journal for computation and mathematics in electrical and electronic motorering, vol. ahead-of-print no. ahead-of-print.
  • [36] B. A. Nasir. "An accurate iron core loss model in the equivalent circuit of induction machines", Journal Of Energy, Hindawi Publisher, vol. 2020, pp 1-10, 2020.
  • [37] Goolak, S., Sapronova, S., Tkachenko, V., Riabov, Ie., Batrak, Ye. “Improvement of the Model of Power Losses in the Pulsed Current Traction Motor in an Electric Locomotive”, Eastern-European Journal of Enterprise Technologies, vol. 6, no 5 (108), pp. 38–46, 2020.
  • [38] Goolak, S., Riabov, I., Tkachenko, V., Sapronova, S., Rubanik, I. “Model of pulsating current traction motor taking into consideration magnetic losses in steel”, Electrical Motorering & Electromechanics, vol. 6, pp. 11–17, 2021.
  • [39] Kopylov, I.P. “Design of electrical machines”, Urayt publishing house, 276 p., 2018.
  • [40] Kuznetsov, V., Kardas-Cinal, E., Gołębiowski, P., Liubarskyi, B., Gasanov, M., Riabov, I., Kondratieva, L., Opala, M. “Methodof Selecting Energy-Efficient Parameters of an Electric Asynchronous Traction Motor for Diesel Shunting Locomotives—Case Study on the Example of a Locomotive Series ChME3 (ЧMЭ3, ČME3, ČKD S200)”, Energies, vol. 15, pp. 317, 2022.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56483793-8545-41b3-9aa0-e33de5fdafa9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.