Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
2524-T3 aluminum alloy sheets with different grain sizes (13 μm, 59 μm, 178 μm, 355 μm, 126 μm, and 87 μm) were prepared using methods such as rolling and annealing. The microstructures and mechanical properties of the 2524-T3 aluminum alloy sheets were studied using optical microscopy (OM), scanning electron microscopy (SEM), and tensile and fatigue crack growth (FCG) rate tests. The grain size had a significant effect on the fatigue crack growth (FCG) rate. Alloys with grain sizes between 50 and 100 μm exhibited high fatigue crack propagation resistances and the lowest FCG rates (da/dN = 1.05–1.45 × 10−3 mm/cycle at ΔK = 30 MPa m1/2). Microstructural observations revealed that fatigue cracks propagated more tortuously in the alloy with grain sizes within the range of 50–100 μm. This result is attributed to the combined effects of grain boundaries, crack deflection, fracture surface roughness-induced crack closure, and plasticity-induced crack closure.
Czasopismo
Rocznik
Tom
Strony
304--312
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
autor
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
- Light Alloy Research Institute, Central South University, Changsha 410083, China
autor
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
autor
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
autor
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
autor
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
- Light Alloy Research Institute, Central South University, Changsha 410083, China
Bibliografia
- [1] J.C. Williams, E.A. Starke Jr., Progress in structural materials for aerospace systems, Acta Materialia 51 (2003) 5775–5799.
- [2] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Materials and Design 56 (2014) 862–871.
- [3] A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, W.S. Miller, Recent development in aluminium alloys for aerospace applications, Materials Science and Engineering A 280 (2000) 102–107.
- [4] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, et al., Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering A 280 (2000) 37–49.
- [5] T.S. Srivatsan, D. Kolar, P. Magnusen, Influence of temperature on cyclic stress response, strain resistance, and fracture behavior of aluminum alloy 2524, Materials Science and Engineering A 314 (2001) 118–130.
- [6] S. Bai, Z. Liu, Y. Gu, X. Zhou, S. Zeng, Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio, Materials Science and Engineering A 530 (2011) 473–480.
- [7] Z. Mingzhe, Y. Danqing, L. Huiqun, L. Wenjun, Z. Feng, Enhanced fatigue crack propagation resistance of an Al–Cu– Mg alloy by artificial aging under influence of electrical field, Materials Science and Engineering A 527 (2010) 4070–4075.
- [8] L. Yanbin, L. Zhiyi, L. Yuntao, X. Qinkun, Z. Jie, Enhanced fatigue crack propagation resistance of an Al–Cu–Mg alloy by artificial aging, Materials Science and Engineering A 492 (2008) 333–336.
- [9] L.P. Maduro, C.A.R.P. Baptista, M.A.S. Torres, R.C. Souza, Modeling the growth of LT and TL-oriented fatigue cracks in longitudinally and transversely pre-strained Al 2524-T3 alloy, Procedia Engineering 10 (2011) 1214–1219.
- [10] Z.Q. Zheng, B. Cai, T. Zhai, S.C. Li, The behavior of fatigue crack initiation and propagation in AA2524-T34 alloy, Materials Science and Engineering A 528 (2011) 2017–2022.
- [11] P.J. Golden, A.F. Grandt Jr., G.H. Bray, A comparison of fatigue crack formation at holes in 2024-T3 and 2524-T3 aluminum alloy specimens, International Journal of Fatigue 21 (1999) S211–S219.
- [12] Y.Q. Chen, S.P. Pan, M.Z. Zhou, D.Q. Yi, D.Z. Xu, Y.F. Xu, Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and propagation behavior of 2524-T3 Al alloy, Materials Science and Engineering A 580 (2013) 150–158.
- [13] T.S. Srivatsan, D. Kolar, P. Magnusen, The cyclic fatigue and final fracture behavior of aluminum alloy 2524, Materials and Design 23 (2002) 129–139.
- [14] Z.Y. Liu, F.D. Li, P. Xia, S. Bai, Y.X. Gu, D. Yu, et al., Mechanisms for goss-grains induced crack deflection and enhanced fatigue crack propagation resistance in fatigue stage II of an AA2524 alloy, Materials Science and Engineering A 625 (2015) 271–277.
- [15] J. Andersson, The influence of grain size variation on metal fatigue, International Journal of Fatigue 27 (2005) 847–852.
- [16] N. Kamp, N. Gao, M. Starink, I. Sinclair, Influence of grain structure and slip planarity on fatigue crack growth in low alloying artificially aged 2xxx aluminium alloys, International Journal of Fatigue 29 (2007) 869–878.
- [17] N. Kamp, N. Gao, M.J. Starink, M.R. Parry, I. Sinclair, Analytical modelling of the influence of local mixed mode displacements on roughness induced crack closure, International Journal of Fatigue 29 (2007) 897–908.
- [18] T. Hanlon, Y.N. Kwon, S. Suresh, Grain size effects on the fatigue response of nanocrystalline metals, Scripta Materialia 49 (2003) 675–680.
- [19] P. Ma, L. Qian, J. Meng, S. Liu, F. Zhang, Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel, Materials Science and Engineering A 605 (2014) 160–166.
- [20] P.S. Pao, H.N. Jones, S.F. Cheng, C.R. Feng, Fatigue crack propagation in ultrafine grained Al–Mg alloy, International Journal of Fatigue 27 (2005) 1164–1169.
- [21] F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, 1995.
- [22] L. Eschbach, P.J. Uggowitzer, M.O. Speidel, Effect of recrystallisation and grain size on the mechanical properties of spray formed AlCuMgAg-alloys, Materials Science and Engineering A 248 (1998) 1–8.
- [23] J.J. Nah, H.G. Kang, M.Y. Huh, O. Engler, Effect of strain states during cold rolling on the recrystallized grain size in an aluminum alloy, Scripta Materialia 58 (2008) 500–503.
- [24] J.H. Kim, S.B. Lee, Behavior of plasticity-induced crack closure and roughness-induced crack closure in aluminum alloy, International Journal of Fatigue 23 (Suppl.) (2001) 247–251.
- [25] C.S. Lee, C.G. Park, Y.W. Chang, Precise determination of fatigue crack closure in Al alloys, Materials Science and Engineering A 216 (1996) 131–138.
- [26] R.O. Ritchie, S. Suresh, Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology, Metallurgical Transactions A 13 (1982) 937–940.
- [27] G.R. Irwin, Linear fracture mechanics, fracture transition, and fracture control, Engineering Fracture Mechanics 1 (1968) 241–257.
- [28] Y. Lin, X. Liu, S. Li, Z. Zeng, A multi-scale Al–Mg alloy containing ultra-fine lamellar structure, Materials Science and Engineering A 636 (2015) 207–215.
- [29] S.M. Yin, F. Yang, X.M. Yang, S.D. Wu, S.X. Li, G.Y. Li, The role of twinning–detwinning on fatigue fracture morphology of Mg–3%Al–1%Zn alloy, Materials Science and Engineering A 494 (2008) 397–400.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56465365-645d-40be-8352-5c6c990d5186