PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Agricultural Nitrate Leaching into Groundwater – Case of Study in Apulia Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nitrogen compounds, which are naturally present in the environment, are essential for the sustenance of life and for the growth of plants. However, to meet the needs of agricultural production and increase crop yields, they are often added in the form of fertilizers to the soil. These nitrogen compounds can then infiltrate deep soil layers, leach until they reach underground aquifers. Leaching of nitrates from soil is a serious environmental problem in modern agriculture as it can contaminate groundwater and degrade soil quality. Both nitrogen fertilization practices and irrigation methods contribute greatly to increased nitrate leaching. The present study aims to demonstrate the real impact of nitrate used in agriculture on groundwater comparing concentration of the chemical element between the soil and the aquifer at different depths. The case study involves a series of soil and groundwater sampling with the related analyses for the identification of nitrate concentrations. The sites considered as case of study have the same type of soil (lithology, texture) and the same land use (arable land with the same type of fertilization and irrigation). The experimentation carried out has shown that there is a correlation between the nitrate present in the soil and that present in the groundwater only for a limited distance from the emission point (<10m from the ground level), while for higher soil packages the correlation is absent as structures, such as vadose areas, intervene which intercept and accumulate nitrate leaching. This study demonstrate that a contamination of nitrate in the groundwater is correlated to the agricultural activities present in the impacting area only to a depth of 10 m and which therefore needs further investigation.
Twórcy
  • Water Research Institute- National Research Council, Viale De Blasio 5, Bari, Italy
  • Institute MINDS, Via Generale Carlo Alberto Della Chiesa 4, Bari, Italy
Bibliografia
  • 1. Ascott M.J., Wang L., Stuart M.E., Ward R.S., Hart A. 2016. Quantification of nitrate storage in the vadose (unsaturated) zone: a missing component of terrestrial N budgets Hydrol. Process., 30, 1903- 1915. https://doi.org/10.1002/hyp.10748
  • 2. Ascott M.J., Gooddy D.C., Wang L., Stuart M.E., Lewis M.A., Ward R.S., Binley A.M. 2017. Global patterns of nitrate storage in the vadose zone. Nat. Commun., 8, 1416. https://doi.org/10.1038/s41467-017-01321-w
  • 3. Camargo J.A., Alonso Á. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ. Int., 32, 831-849. https://doi.org/10.1016/j.envint.2006.05.002
  • 4. Chen Z., Govindaraju R.S., Kavvas M.L. 1994. Spatial averaging of unsaturated flow equations under infiltration conditions over areally heterogeneous fields: 1. Development of models. Water Resour. Res., 30, 2, 523-533. https://doi.org/10.1029/93WR02885
  • 5. Ervinia A., Huang j., Zhang Z. 2020. Nitrogen sources, processes, and associated impacts of climate and land-use changes in a coastal China watershed: insights from the INCA-N model. Mar. Pollut. Bull., 159, Article 111502. https://doi.org/10.1016/j.marpolbul.2020.111502
  • 6. Green C.T., Fisher L.H., Bekins B.A. 2008. Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J. Environ. Qual., 37, 1073-1085. https://doi.org/10.2134/jeq2007.0010
  • 7. Green C.T., Liao L., Nolan B.T., Juckem P.F., Shope C.L., Tesoriero A.J., Jurgens B.C. 2018. Regional variability of nitrate fluxes in the unsaturated zone and groundwater, Wisconsin, USA. Water Resour. Res., 54, 301-322. https://doi.org/10.1002/2017WR022012
  • 8. Huan H., Hu L., Yang Y., Jia Y., Lian X., Ma X., Jiang Y., Xi B. 2020. Groundwater nitrate pollution risk assessment of the groundwater source field based on the integrated numerical simulations in the unsaturated zone and saturated aquifer. Environ. Int., 137, Article 105532. https://doi.org/10.1016/j.envint.2020.105532
  • 9. Huang T., Pang Z., Yuan L. 2013. Nitrate in groundwater and the unsaturated zone in (semi)arid northern China: baseline and factors controlling its transport and fate. Environ. Earth Sci., 70, 145-156. https://doi.org/10.1007/s12665-012-2111-3
  • 10. Knobeloch L., Salna B., Hogan A., Postle J., Anderson H. 2000. Blue babies and nitrate-contaminated well water. Environ. Health Perspect., 108, 675-678. https://doi.org/10.1289/ehp.00108675
  • 11. Korom S.F. 1992. Natural denitrification in the saturated zone: a review. Water Resour. Res., 28, 1657- 1668. https://doi.org/10.1029/92WR00252
  • 12. Yang W., Jiao Y., Yang M., Wen H., Gu P., Yang J., Liu L., Yu J. 2020. Minimizing soil nitrogen leaching by changing furrow irrigation into sprinkler fertigation in potato fields in the Northwestern China Plain. Water, 12,8, 2229. https://doi.org/10.3390/w12082229
  • 13. Liao L., Green C.T., Bekins B.A., Böhlke J.K. 2012. Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resour. Res., 48, 18. https://doi.org/10.1029/2011WR011008
  • 14. Lu J., Hu T., Zhang B., Wang L., Yang S., Fan J., Yan S., Zhang F. 2021. Nitrogen fertilizer management effects on soil nitrate leaching, grain yield and economic benefit of summer maize in Northwest China. Agric. Water Manag., 247, Article 106739. https://doi.org/10.1016/j.agwat.2021.106739
  • 15. Machiwal D., Jha M.K., Singh V.P., Mohan C. 2018. Assessment and mapping of groundwater vulnerability to pollution: current status and challenges. Earth Sci. Rev., 185, 901-927. https://doi.org/10.1016/j.earscirev.2018.08.009
  • 16. Meter K.J.V., Basu N.B., Veenstra J.J., Burras C.L. 2016. The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes. Environ. Res. Lett.. 11, Article 035014. https://doi.org/10.1088/1748-9326/11/3/035014
  • 17. Mirvish S.S. 1985. Gastric cancer and salivary nitrate and nitrite. Nature, 315, 461-462. https://doi.org/10.1038/315461c0
  • 18. Patel N., Srivastav A.L., Patel A., Singh A., Singh S.K., Chaudhary V.K., Singh P.K., Bhunia B. 2022. Nitrate contamination in water resources, human health risks and its remediation through adsorption: a focused review. Environ. Sci. Pollut. Res., 29, 69137-69152, https://doi.org/10.1007/s11356-022-22377-2
  • 19. Rath S., Zamora-Re M., Graham W., Dukes M., Kaplan D. 2021. Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agric. Water Manag., 246, Article 106634. https://doi.org/10.1016/j.agwat.2020.106634
  • 20. Robertson W.M., Bohlke J.K., Sharp J.M. 2017. Response of deep groundwater to land use change in desert basins of the Trans-Pecos region, Texas, USA: effects on infiltration, recharge, and nitrogen fluxes. Hydrol. Process., 31, 2349-2364. https://doi.org/10.1002/hyp.11178
  • 21. Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. 2022. Cover Crops for Sustainable Cropping Systems: A Review. Agriculture, 12, 2076. https://doi.org/10.3390/agriculture12122076
  • 22. Safadoust A., Soleymanekhtyari S., Gharabaghi B. 2024. Zeolite intervention in soil nitrate dynamics: insights from column experiments and modelling. Hydrological Sciences Journal. https://doi.org/10.1080/02626667.2024.2413424
  • 23. Seung-Hee K., Dong-Hun L., Min-Seob K., Han-Pil R., Jin H., Kyung-Hoon S. 2023. Systematic tracing of nitrate sources in a complex river catchment: an integrated approach using stable isotopes and hydrological models. Water Res., 235, Article 119755. https://doi.org/10.1016/j.watres.2023.119755
  • 24. Stenberg M., Aronsson H., Lindén B., Rydberg T., Gustafson A. 1999. Soil mineral nitrogen and nitrate leaching losses in soil tillage systems combined with a catch crop. Soil and Tillage Research, 50, 2, 115-125. https://doi.org/10.1016/ S0167-1987(98)00197-4
  • 25. Turkeltaub T., Jia X.X., Zhu Y.J., Shao M.A., Binley A. 2018. Recharge and nitrate transport through the deep vadose zone of the loess plateau: a regionalscale model investigation. Water Resour. Res., 54, 4332-4346, https://doi.org/10.1029/2017wr022190
  • 26. Wang S., Wei S., Liang H.2019. Nitrogen stock and leaching rates in a thick vadose zone below areas of long-term nitrogen fertilizer application in the North China Plain: a future groundwater quality threat. J. Hydrol., 576, 28-40. https://doi.org/10.1016/j.jhydrol.2019.06.012
  • 27. Worrall F., Burt T., Howden N., Whelan M. 2009. Fluvial flux of nitrogen from Great Britain 1974–2005 in the context of the terrestrial nitrogen budget of Great Britain. Glob. Biogeochem. Cycles, 23, Article GB3017. https://doi.org/10.1029/2008GB003351
  • 28. Worrall F., Howden N.J.K., Burt T.P. 2015. Evidence for nitrogen accumulation: the total nitrogen budget of the terrestrial biosphere of a lowland agricultural catchment. Biogeochemistry, 123, 411-428. https://doi.org/10.1007/s10533-015-0074-7
  • 29. Xie Z., Chen S., Huang J., Li D., Lu X. 2023. Patterns and drivers of fecal coliform exports in a typhoon-affected watershed: insights from 10-year observations and SWAT model. J. Clean. Prod., 406, Article 137044, https://doi.org/10.1016/j.jclepro.2023.137044
  • 30. Zang Y.G., Hou X.S., Li Z.P., Li P., Sun Y., Yu B.W., Li M. 2022. Quantify the effects of groundwater level recovery on groundwater nitrate dynamics through a quasi-3D integrated model for the vadose zone-groundwater coupled system. Water Res., 226, 119213. https://doi.org/10.1016/j.watres.2022.119213
  • 31. Zheng W., Wang S. 2021. Extreme precipitation accelerates the contribution of nitrate sources from anthropogenetic activities to groundwater in a typical headwater area of the North China Plain. J. Hydrol., 603. https://doi.org/10.1016/j.jhydrol.2021.127110
  • 32. Zhou J., Gu B., Schlesinger W.H., Ju X. 2016. Significant accumulation of nitrate in Chinese semihumid croplands. Sci. Rep., 6, Article 25088. https://doi.org/10.1038/srep25088
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5643948a-4a3b-4442-b4bc-746c2411c4ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.