Identyfikatory
Warianty tytułu
Scale-up for single screw extrusion of polymeric materials
Języki publikacji
Abstrakty
Na podstawie badań symulacyjnych opracowano metodę zwiększania skali procesu jednoślimakowego wytłaczania tworzyw polimerowych, z zastosowaniem technik ewolucyjnych (algorytmów genetycznych). Do symulacji procesu wytłaczania stosowano program GSEM (Global Screw Extrusion Model), a do zwiększenia skali specjalnie w tym celu opracowany program GASES (Genetic Algorithms Screw Extrusion Scaling). Jako kryteria stosowano jednostkowe zużycie energii, szybkość uplastyczniania i szybkość wzrostu temperatury tworzywa. Uzyskano znaczący wzrost wydajności procesu wytłaczania.
A method of scaling-up the single screw extrusion of polymeric materials has been developed based on the process simulation studies using the evolutionary techniques (genetic algorithms). The simulation tests were carried out using the GSEM extrusion simulation program, while the scaling-up was carried out on the basis of the GASES evolutionary scaling-up program specially developed for this purpose. Scaling-up has been performed according to the criteria of unit energy consumption, polymer melting rate and polymer temperature, obtaining a significant increase in extrusion throughput.
Czasopismo
Rocznik
Tom
Strony
331--340
Opis fizyczny
Bibliogr. 52 poz., rys., wykr.
Twórcy
autor
- Politechnika Warszawska, Instytut Technik Wytwarzania, ul. Narbutta 85, 02-524 Warszawa
Bibliografia
- [1] Covas J.A., Gaspar-Cunha A., Oliveira P.: International Journal of Forming Processes 1998, 1, 323.
- [2] Covas J.A., Gaspar-Cunha A., Oliveira P.: Polymer Engineering and Science 1999, 39 (3), 443. https://doi.org/10.1002/pen.11434
- [3] Covas J.A., Gaspar-Cunha A.: „The Use of an Optimisation Approach to the Design of Extrusion Screw”, Materiały konferencyjne The Polymer Processing Society Sixteenth Annual Meeting (PPS-16), Szanghaj, Chiny, 2000.
- [4] Gaspar-Cunha A., Covas J.A.: International Polymer Processing 2001, 16 (3), 229. https://doi.org/10.3139/217.1652
- [5] Nastaj A., Wilczyński K.: Polimery 2018, 63 (1), 38. https://doi.org/10.14314/polimery.2018.1.6
- [6] Nastaj A., Wilczyński K.: Polimery 2018, 63 (4), 297. https://doi.org/10.14314/polimery.2018.4.7
- [7] Gaspar-Cunha A., Covas J.A., Vergnes B.: “An Optimisation Methodology for Setting the Operating Conditions in Twin-Screw Extrusion”, Materiały konferencyjne The Polymer Processing Society Eighteenth Annual Meeting (PPS-18), Guimaraes, Portugalia, 2002.
- [8] Gaspar-Cunha A., Poulesquen A., Vergnes B., Covas J.A.: International Polymer Processing 2002, 17 (3), 201. https://doi.org/10.3139/217.1701
- [9] Gaspar-Cunha A., Covas J.A., Vergnes B.: Polymer Engineering and Science 2005, 45 (8), 1159. https://doi.org/10.1002/pen.20391
- [10] Nastaj A.: Polimery 2020, 65 (5), 380. https://doi.org/10.14314/polimery.2020.5.6
- [11] Nastaj A.: Polimery 2020, 65 (6), 468. https://doi.org/10.14314/polimery.2020.6.6
- [12] Nastaj A., Wilczyński K.: Polymers 2020, 12 (1), 149. https://doi.org/10.3390/polym12010149
- [13] Wilczyński K., White J.L.: Polimery 2008, 53 (10), 754. https://doi.org/10.14314/polimery.2008.754
- [14] Wilczyński K., Nastaj A., Lewandowski A., Wilczyński K.J.: Polimery 2011, 56 (1), 45 https://doi.org/ 10.14314/polimery.2011.045
- [15] Wilczyński K., Lewandowski A., Wilczyński K.J.: Polymer Engineering and Science 2012, 52 (6), 1258. https://doi.org/10.1002/pen.23076
- [16] Lewandowski A., Wilczyński K.J., Nastaj A., Wilczyński K.: Polymer Engineering and Science 2015, 55 (12), 2838. https://doi.org/10.1002/pen.24175
- [17] Rauwendaal C.: “Polymer Extrusion”, Carl Hanser Verlag, Munich 2014.
- [18] Hensen F., Knappe W., Potente H.: „Handbuch der Kunststoff-Extrusiontechnik. Grundlagen”, Carl Hanser Verlag, Munich 1989.
- [19] McKelvey J.M.: “Polymer Processing”, John Wiley & Sons Inc., New York 1962.
- [20] Stevens M.J., Covas J.A.: „Extruder Principles and Operation”, Springer Berlin Heidelberg 1995.
- [21] Campbell G.A., Spalding M.A.: “Analyzing and Troubleshooting Single-Screw Extruders”, Carl Hanser Verlag, Munich 2013.
- [22] Chung C.I: “Extrusion of Polymers -- Theory and Practice”, Carl Hanser Verlag, Munich 2019.
- [23] Chen B., Zhu L., Zhang F. et al.: “Process Development and Scale-Up. In Developing Solid Oral Dosage Forms”, Elsevier, Amsterdam 2017, str. 821.
- [24] Carley J.F., McKelvey J.M.: Industrial and Engineering Chemistry 1953, 45 (5), 989. https://doi.org/10.1021/ie50521a036
- [25] Maddock B.H.: SPE Journal 1959, 15, 383.
- [26] Maddock B.H.: Polymer Engineering and Science 1974, 14 (12), 853. https://doi.org/10.1002/pen.760141208
- [27] Fenner R.T., Williams J.G.: Polymer Engineering and Science 1971, 11 (6), 474. https://doi.org/10.1002/pen.760110606
- [28] Yi B., Fenner R.T.: Plastics and Rubber Processing and Applications 1976, 1, 119.
- [29] Pearson J.R.A.: Plastics and Rubber Processing and Applications 1976, 1, 113.
- [30] Potente H., Fischer P.: Kunststoffe 1977, 67, 242.
- [31] Schenkel G.: Kunststoffe 1978, 68, 155.
- [32] Chung C.I.: Polymer Engineering and Science 1984, 24 (9), 626. https://doi.org/10.1002/pen.760240904
- [33] Rauwendaal C.: Polymer Engineering and Science 1987, 27 (14), 1059. https://doi.org/10.1002/pen.760271406
- [34] Potente H.: International Polymer Processing 1991, 6 (4), 267. https://doi.org/10.3139/217.910267
- [35] Covas J.A., Gaspar-Cunha A.: International Polymer Processing 2009, 24 (1), 67. https://doi.org/10.3139/217.2200
- [36] Gaspar-Cunha A., Covas J.A.: International Journal of Natural Computing Research 2014, 4 (1), 17. https://doi.org/10.4018/ijncr.2014010102
- [37] Denysiuk R., Recio G., Covas J.A., Gaspar-Cunha A.: Polymer Engineering and Science 2018, 58 (4), 493. https://doi.org/10.1002/pen.24732
- [38] Gaspar-Cunha A., Covas J.A.: “A Scaling-up Methodology for Co-rotating Twin-Screw Extruders”, Materiały konferencyjne (PPS-27), Marrakesz, Maroko, 10--14 maja 2011 r., str. 1–6.
- [39] Berzin F., David C., Vergnes B.: International Polymer Processing 2020, 35 (5), 422. https://doi.org/10.1515/ipp-2020-350504
- [40] Nastaj A., Wilczyński K.: Polymers 2021, 13 (10), 1547. https://doi.org/10.3390/polym13101547
- [41] Wilczyński K.: „Rheology in Polymer Processing. Modeling and Simulation”, Carl Hanser Verlag, Munich 2021.
- [42] Wilczynski K., Nastaj A., Lewandowski A., Wilczyński K.J.: Polymer-Plastics Technology and Engineering 2012, 51 (6), 626. https://doi.org/10.1080/03602559.2012.659313
- [43] Wilczyński K., Lewandowski A., Wilczyński K.J.: Polymer Engineering and Science 2012, 52 (6), 1258. https://doi.org/10.1002/pen.23076
- [44] Wilczyński K., Nastaj A., Wilczyński K.J.: International Polymer Processing 2013, 28 (1), 34. https://doi.org/10.3139/217.2640
- [45] Wilczyński K.J., Nastaj A., Lewandowski A., Wilczyński K.: Polymer Engineering and Science 2014, 54 (10), 2362. https://doi.org/10.1002/pen.23797
- [46] Wilczyński K.J., Lewandowski A., Nastaj A., Wilczyński K.: International Polymer Processing 2016, 31 (1), 82. https://doi.org/10.3139/217.3154
- [47] Wilczyński K.J., Lewandowski A., Nastaj A., Wilczyński K.: Advances in Polymer Technology 2017, 36 (1), 23. https://doi.org/10.1002/adv.21570
- [48] Wilczyński K.J., Lewandowski A., Wilczyński K.: Polymer Engineering and Science 2016, 56 (12), 1349. https://doi.org/10.1002/pen.24368
- [49] Wilczyński K.J., Nastaj A., Wilczyński K.: Advances In Polymer Technology 2018, 37 (6), 2142. https://doi.org/10.1002/adv.21873
- [50] Wilczyński K., Nastaj A., Lewandowski A. et al.: International Polymer Processing 2015, 30 (1), 113. https://doi.org/10.3139/217.3007
- [51] Wilczyński K., Buziak K., Wilczyński K.J. et al.: Polymers 2018, 10 (3), 295. https://doi.org/10.3390/polym10030295
- [52] Wilczyński K., Nastaj A., Lewandowski A. et al.: Polymers 2019, 11 (12), 2106. https://doi.org/10.3390/polym11122106
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5642ecd5-415a-4223-9544-49bdc2b574f8