PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Conditional reciprocal continuity and common fixed points

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the present paper is to obtain common fixed point theorems by employing the recently introduced notion of conditional reciprocal continuity. We demonstrate that conditional reciprocal continuity ensures the existence of fixed points under contractive conditions which otherwise do not ensure the existence of fixed points. Our results generalize and extend several well-known fixed point theorems in the setting of metric spaces. We also provide more answers to the open problem posed by B. E. Rhoades [Contractive Definitions and Continuity, Contemporary Math. 72 (1988), 233-245] regarding existence of a contractive condition which is strong enough to generate a fixed point, but which does not force the map to be continuous at the fixed point.
Rocznik
Tom
Strony
149--158
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
  • Department of Mathematics D.S.B. Campus Kumaun University Nainital 263002, India
autor
  • Department of Mathematics D.S.B. Campus Kumaun University Nainital 263002, India
autor
  • Department of Mathematics D.S.B. Campus Kumaun University Nainital 263002, India
Bibliografia
  • [1] Bisht R.K., Common fixed points of conditionally commuting mappings satisfying weaker continuity conditions, Fasc. Math., 49(2012), 33-41.
  • [2] Gopal D., Pant R.P., Ranadive A.S., Common fixed points of absorbing maps, Bulletin of the Marathwada Math. Soc., 9(1)(2008), 43-48.
  • [3] Imdad M., Ali J., Reciprocal continuity and common fixed points of nonself mappings, Taiwanese Journal of Mathematics, 13(5)(2009), 1457-1473.
  • [4] Jungck G., Compatible mappings and common fixed points, Internat. J. Math. Math. Sci, 9(1986), 771-779.
  • [5] Jungck G., Common fixed points for noncontinuous nonself maps on a non- metric space, Far East Journal of Mathematical Sciences, 4(1996), 199-215.
  • [6] Kumar S., Pant B.D., A common fixed point theorem in probabilistic metric space using implicit relation, Filomat, 22(2)(2008), 43-52.
  • [7] Meir A., Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969), 326-329.
  • [8] Muralisankar S., Kalpana G., Common fixed point theorem in intuitionistic fuzzy metric space using general contractive condition of integral type, Int. J. Contemp. Math. Sciences, 4(11)(2009), 505-518.
  • [9] Pant R.P., Common fixed points of four mappings, Bull. Cal. Math. Soc., 90(1998), 281-286.
  • [10] Pant R.P., Common fixed points of Lipschitz type mapping pairs, J. Math. Anal. Appl., 240(1999), 280-283.
  • [11] Pant R.P., , Discontinuity and fixed points, J. Math. Anal. Appl., 240(1999), 284-289.
  • [12] Pant R.P., Bisht R.K., Common fixed point theorems under a new continuity condition, Ann. Univ. Ferrara, 58(1)(2012), 127-141.
  • [13] Pant R.P., Joshi P.C., Gupta V., A Meir-Keeler type fixed point theorem, Indian J. Pure Appl. Math., 32(6)(2001), 779-787.
  • [14] Pant R.P., Pant V., Some fixed point theorem in fuzzy metric space, J. Fuzzy Math., 16(3)(2008), 599-611.
  • [15] Rhoades B.E., Contractive definitions and continuity, Contemporary Math., 72(1988), 233-245.
  • [16] Singh S.L., Mishra S.N., Coincidences and fixed points of reciprocally con¬tinuous and compatible hybrid maps, Int. J. Math. and Math. Sci., 30(10) (2002), 627-635.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5642e000-3928-4622-b804-7c0e9a462c58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.