PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetic analysis, efficiency map and thermal analysis of an 80-kW IPM motor with distributed and concentrated winding for electric vehicle applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a comparison of an AC radial flux interior permanent magnet (IPM) motor with the distributed winding (DW) and concentrated winding (CW). From time to time, manufacturers of electric vehicles change the design of electric motors, such changes may include changing the DW into CW and vice versa. A change to the winding in a radial permanent magnet synchronous motor may lead to a change in motor parameters during motor operation and /or change in the distribution of the magnetic field and thermal circuit of the electrical machine. The electromagnetic analysis, efficiency map, mechanical stress, and thermal analysis of the machine with the DW and CW are presented in this paper. This article describes the advantages and disadvantages of selected stator winding designs and helps understand manufacturers’ designers how the DW and CW play a key role in achieving the designed motor’s operational parameters such as continuous performance. Analyzing the performance of both machines will help identify their advantages and disadvantages with regard to thermal phenomena, magnetic field and operational parameters of the presented IPM prototypes. Both prototypes are based on commonly used topologies such as 12/8 (slot/pole) and 30/8 (slot/pole) IPM motors consisting of magnets arranged in a V-shape. The AC IPM motor was designed for an 80 kW propulsion system to achieve 170 N·m at a base speed of 4 500 rpm. Modern CAD tools are utilized throughout the numerical computations based on 2-D finite element methods. Selected test data are used to verify and validate the accuracy of finite element models.
Rocznik
Strony
981--1002
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wz.
Twórcy
autor
  • Opole University of Technology, Poland
  • Rzeszow University of Technology, Poland
  • Opole University of Technology, Poland
  • The Jacob of Paradies University, Poland
  • The Jacob of Paradies University, Poland
Bibliografia
  • [1] Koc M., Emiroglu S., Tamyurek B., Analysis and simulation of efficiency optimized IPM drives in constant torque region with reduced computational burden, Turkish Journal of Electrical Engineering and Computer Sciences, vol. 29, pp. 1643–1658 (2021), DOI: 10.3906/elk-2005-152.
  • [2] Qiu H., Zhang Y., Yang C., Yi R., Performance analysis and comparison of PMSM with concentrated winding and distributed winding, Archives of Electrical Engineering, vol. 2, no. 69, pp. 303–317 (2020), DOI: 10.24425/aee.2020.133027.
  • [3] Ogbuka C.U., Nwosu C., Agu M., Dynamic and steady state performance comparison of line-start permanent magnet synchronous motors with interior and surface magnets, Archives of Electrical Engineering, vol. 65, no. 1, pp. 105–116 (2016), DOI: 10.1515/aee-2016-0008.
  • [4] Liu X., Li Y., Liu Z., Ling T., Luo Z., Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles, Archives of Electrical Engineering, vol. 66, no. 2, pp. 279–292 (2017), DOI: 10.1515/aee-2017-0021.
  • [5] Kwon S.O., Kim S.I., Zhang P., Hong J.P., Performance comparison of IPMSM with distributed and concentrated windings, Industry Applications Conference, Tampa, USA, pp. 1–5 (2006), DOI: 10.1109/IAS.2006.256807.
  • [6] Liu G., Gong W., Chen Q., Jian L., Shen Y., Zhao W., Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles, IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4176–4179 (2012), DOI: 10.1063/1.3672853.
  • [7] Yamazaki K., Fukushima Y., Sato M., Loss analysis of permanent-magnet motors with concentrated winding–validation of magnet eddy-current loss due to stator and rotor shapes, IEEE Transactions on Industry Applications, vol. 45, no. 4, pp. 1334–1342 (2009), DOI: 10.1109/TIA.2009.2023393.
  • [8] Dutta R., Chong L., Rahman F., Analysis and experimental verification of losses in a concentrated wound interior permanent magnet machine, Progress in Electromagnetics Research B, vol. 48, pp. 221–248 (2013), DOI: 10.2528/PIERB12110715.
  • [9] Choe Y.Y., Oh S.Y., Ham S.H., Jang I.S., Comparison of concentrated and distributed winding in an IPMSM for vehicle traction, Energy Procedia, vol. 14, pp. 1368–1373 (2012), DOI: 10.1016/j.egypro.2011.12.1103.
  • [10] Gundogdu T., Komurgoz G., Influence of winding configuration on the performance of surface-mounted PM machines, International Journal of Mechanical Engineering and Robotics Research, vol. 6, pp. 46–49 (2017), DOI: doi.org/10.18178/ijmerr.6.1.46-49.
  • [11] Chevailler S., Feng L., Binder A., Short-circuit faults in distributed and concentrated windings of PM synchronous motors, European Conference on Power Electronics and Applications, Aalborg, Denmark, pp. 1–10 (2007), DOI: 10.1109/EPE.2007.4417416.
  • [12] Szelag W., Jedryczka C., Analysis of multiphase synchronous machines with fractional slot concentrated windings, Computer Applications in Electrical Engineering, vol. 14, pp. 231–244 (2016), DOI: 10.21008/j.1508-4248.2016.0021.
  • [13] El-Rafaie A.M., Fractional-slot concentrated-winding synchronous permanent magnet machines: opportunities and challenges, IEEE Transactions on Industrial Electronics, vol. 1, no. 57, pp. 107–121 (2010), DOI: 10.1109/TIE.2009.2030211.
  • [14] El-Rafaie A.M., Zhu Z.Q., Jahns T.M., Howe D., Winding inductances of fractional slot surface-mounted permanent magnet brushless machines, Edmonton, Canada, pp. 1–8 (2008), DOI: 10.1109/08IAS.2008.61.
  • [15] Papini F., Osama M., Electromagnetic design of an interior permanent magnet motor for vehicle traction, XIII International Conference on Electrical Machines, Alexandropoulis, Greece, pp. 1–7 (2018), DOI: 10.1109/ICELMACH.2018.8507222.
  • [16] Coenen I., Giet M., Hameyer K., Quantitative comparison of electromagnetic performance of electrical machines for HEVs/EVs, CES Transactions on Electrical Machines and Systems, vol. 1, pp. 37–47 (2017), DOI: 10.23919/TEMS.2017.7911107.
  • [17] Santiago J.D., Bernhoff H., Ekergard B., Eriksson S., Electrical motor drivelines in commercial allelectric vehicles: a review, IEEE Transactions on Vehicular Technology, vol. 61, pp. 475–484 (2012), DOI: 10.1109/TVT.2011.2177873.
  • [18] Ehsani M., Yimin G., Miller J.M., Hybrid electric vehicles: architecture and motor drives, Proceeding of IEEE, vol. 4, pp. 719–728 (2007), DOI: 10.1109/JPROC.2007.892492.
  • [19] Agamloh E., Jouanne A., Yokochi A., An overview of electric machine trends in modern electric vehicles, Machines, vol. 8, no. 2, pp. 1–16 (2020), DOI: 10.3390/machines8020020.
  • [20] Chu W.Q., Zhu Z.Q., Zhang J., Liu X., Stone D.A., Foster M.P., Investigation on operational and efficiency map of electrically excited machines for electrical vehicle applications, IEEE Transactions on Magnetics, vol. 51, no. 4, pp. 1–10 (2015), DOI: 10.1109/TMAG.2014.2359008.
  • [21] Zhang Z., Liu H., Song T., Zhang Q., Hu W., Liu W., Performance evaluation of a 60kW IPM motor for medium commercial EV traction application, CES Transactions on Electrical Machines and Systems, vol. 2, pp. 195–203 (2019), DOI: 10.30941/CESTEMS.2019.00026.
  • [22] Huynh T.A., Hsieh M.F., Performance evaluation of permanent magnet motors using thin electrical steels, IEEJ Journal of Industry Applications, vol. 6, pp. 422–428 (2017), DOI: 10.1541/ieejjia.6.422.
  • [23] Kefalas T.D, Kladas A.G., Thermal investigation of permanent-magnet synchronous motor for aerospace applications, IEEE Transactions Industrial Electronics, vol. 61, no. 8, pp. 4404–4411 (2014), DOI: 10.1109/TIE.2013.2278521.
  • [24] Mlot A., Gonzalez J., Performance assessment of axial-flux permanent magnet motors from a manual manufacturing process, Energies, vol. 13, no. 8, pp. 1–15 (2020), DOI: 10.3390/en13082122.
  • [25] Mlot A., Kowol M., Kolodziej J., Lechowicz A., Skrobotowicz P., Analysis of IPM motor parameters in an 80-kW traction motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 467–481 (2020), DOI: 10.24425/aee.2020.133038.
  • [26] Mellor P., Wrobel R., Mlot A., Horseman T., Staton D., Influence of winding design on losses in brushless AC IPM propulsion Motors, IEEE Energy Conversion Congress and Exposition, Phoenix, USA, pp. 1–8 (2011), DOI: 10.1109/ECCE.2011.6064143.
  • [27] Godbehere J., Wrobel R., Drury D., Mellor P.H., Salient PM rotor topology selection for a zero-speed injection based sensorless controlled machine, IET International Conference on Power Electronics, Machines and Drives, Glasgow, UK, pp. 19–21 (2016), DOI: 10.1049/cp.2016.0316.
  • [28] Ma F., Yin H., Wei L., Tian G., Gao H., Design and optimization of IPM motor considering flux weakening capability and vibration for electric vehicle applications, Energies, vol. 10, no. 1533, pp. 1–15 (2018), DOI: 10.3390/su10051533.
  • [29] Mynarek P., Kolodziej J., Mlot A., Kowol M., Influence of a winding short-circuit fault on demagnetization risk and local magnetic forces in V-shaped interior PMSM with distributed and concentrated winding, Energies, vol. 14, no. 5125, pp. 1–16 (2021), DOI: 10.3390/en14165125.
  • [30] Kwon S., Kim S.I., Zhang P., Hong J.P., Performance comparison of IPMSM with distributed and concentrated windings, IEEE Industry Applications Conference, Forty-first IAS Annual Meeting, Florida, USA, pp. 1–5 (2006), DOI: 10.1109/IAS.2006.256807.
  • [31] Motor-CAD, www.motor-design.com.
  • [32] Volpe G., Popescu M., Marignetti F., Goss J., Modelling AC Winding Losses in a PMSM with High Frequency and Torque Density, IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, pp. 1–6 (2018), DOI: 10.1109/ECCE.2018.8558065.
  • [33] Volpe G., Popescu M., Marignetti F., Goss J., AC Winding Losses in Automotive Traction E-Machines: a New Hybrid Calculation Method, IEEE International Electric Machines and Drives Conference (IEMDC), San Diego, CA, pp. 1–5 (2019), DOI: 10.1109/IEMDC.2019.8785409.
  • [34] Mellor P., Wrobel R., Simpson N., AC losses in high frequency electrical machine windings formed from large section conductors, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1–8 (2014), DOI: 10.1109/ECCE.2014.6954163.
  • [35] Mlot A., Korkosz M., Grodzki P., Lukaniszyn M., Analysis of the proximity and skin effects on copper loss in a stator core, Archives of Electrical Engineering, vol. 63, no. 2, pp. 211–225 (2014), DOI: 10.2478/aee-2014-0017.
  • [36] Xia Z.P., Zhu Z.Q., Wu L.J., Jewell G.W., Comparison of radial vibration forces in 10-pole/12-slot fractional surface-mounted and interior PM brushless AC machines, XIX International Conference on Electrical Machines, Rome, Italy, pp. 1–6 (2010), DOI: 10.1109/ICELMACH.2010.5608062.
  • [37] Han P.W., Choi J.H., Kim D.J., Thermal analysis of high speed induction motor by using lumpedcircuit parameters, Journal of Electrical Engineering and Technology, vol. 10, pp. 2040–2045 (2015), DOI: 10.5370/JEET.2015.10.5.2040.
  • [38] Fan J., Zhang Ch., Wang Z., Thermal analysis of permanent magnet motor for the electric vehicle application considering driving duty cycle, IEEE Transactions on Magnetics, vol. 46, no. 10, pp. 2493–2496 (2010), DOI: 10.1109/TMAG.2010.2042043.
  • [39] Deaconu D.I., Ghita C., Chirila A.I., Navrapescu V., Popescu M., Thermal study of induction machine using Motor-Cad, 3rd International Symposium on Electrical and Electronics Engineering, Galati, Romania, pp. 1–5 (2010), DOI: 10.1109/ISEEE.2010.5628481.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5642912c-f4ee-4a87-8d64-d50b734dea94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.