PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of untreated abaca fibre on mechanical properties of lightweight foamed concrete

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Presently, the expenditure on construction materials grows dramatically along with the enduring effect on the ecosystem, and it has led the academics to the recognition of natural plant fibres such as abaca fibre (AF) for enhancing the mechanical properties of concrete. AF is plentifully obtainable making it fairly relevant to be employed as a strengthening material in lightweight foamed concrete (LFC). Moreover, natural plant fibre-reinforced concrete has been progressively utilized in construction for several decades to decrease crack growth under the static load. This paper anticipates examining the effectiveness of the addition of AF in LFC to enhance its mechanical properties. LFC specimens of 550 kg/m3 density were reinforced with AF at weight fractions of 0.00%, 0.15%, 0.30%, 0.45% and 0.60%. Three parameters have been assessed which were flexural strength, compressive strength and tensile strength. The results revealed that adding 0.45% AF into LFC enables optimal compressive, flexural and splitting tensile strengths. The presence of AF augments material strength by filling spaces, micro-cracks, and gaps inside the LFC structure. Additionally, AF helped reduce crack spreading when the plastic state of the LFC cementitious matrix was loaded. Though, further, than the optimum level of AF addition, accumulation and the non-uniform distribution of AF were identified, which triggers the lowering of the LFC strength properties substantially. The output of this preliminary investigation would give a better understanding of the potential utilization of plant fibre in LFC. It is of great importance to drive the sustainable development and application of LFC material and infrastructures.
Rocznik
Strony
51--61
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
  • Associate Prof.; School of Housing, Building and Planning, Universiti Sains Malaysia, 11800, Penang, Malaysia
Bibliografia
  • [1] Ramamurthy, K., Nambiar, E.K.K. & Ranjani, G.I.S. (2009). Classification of studies on properties of foam concrete. Cement and Concrete Composites, 31(6), 388-396.
  • [2] Mydin, M.A.O., Musa, M. & Ghani, A.N.A. (2018). Fiber glass strip laminates strengthened lightweight foamed concrete: Performance index, failure modes and microscopy analysis. AIP Conference Proceedings, 2016, 020111.
  • [3] Jiang, J., Lu, Z., Niu, Y., Li, J. & Zhang, Y. (2016). Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Materials and Design, 92, 949-959.
  • [4] Mccarthy, A. & Jones, M.R. Preliminary views on the potential of foamed concrete as a structural material. Magazine of Concrete Research, 57(1), 21-31.
  • [5] Norgaard, J. & Othuman Mydin, M.A. (2013). Drywall thermal properties exposed to high temperatures and fire condition. Jurnal Teknologi, 62(1), 63-68.
  • [6] Johnson Alengaram, U., Al Muhit, B.A., Jumaat, M.Z. & Jing, M.L.Y. (2013). A comparison of the thermal conductivity of oil palm shell foamed concrete with conventional materials. Materials and Design, 51, 522-529.
  • [7] Feng, J., Zhang, R., Gong, L., Li, Y., Cao, W. & Cheng, X. (2015). Development of porous fly ash-based geopolymer with low thermal conductivity. Materials and Design, 65, 529-533.
  • [8] Liu, C., Luo, J., Li, Q., Gao, S. & Chen, S. (2019). Calcination of green high-belite sulphoaluminate cement (GHSC) and performance optimizations of GHSC based foamed concrete. Materials and Design, 182, 107986.
  • [9] Feng, S., Zhou, Y., Wang, Y. & Lei, M. (2020). Experimental research on the dynamic mechanical properties and damage characteristics of lightweight foamed concrete under impact loading. International Journal of Impact Engineering, 140, 103558.
  • [10] Chandni, T.J. & Anand, K.B. (2018). Utilization of recycled waste as filler in foam concrete. Journal of Building Engineering, 19, 154-160.
  • [11] Liu, Y., Wang, Z., Fan, Z., Gu, J. (2020). Study on properties of sisal fiber modified foamed concrete. IOP Conf. Ser. Material Science Engineering, 744, 012042.
  • [12] Nensok Hassan M., Othuman Mydin M.A., Awang H. (2022). Fresh state and mechanical properties of ultra-lightweight foamed concrete incorporating alkali treated banana fibre. Jurnal Teknologi, 84, 117-128.
  • [13] Flores-Johnson, E.A., Yan, Y.Z., Carrillo, J.G., González-Chi, P.I., Herrera-Franco, P.J., Li, Q.M. (2018). Mechanical Characterization of Foamed Concrete Reinforced with Natural Fibre. Materials Research Proceedings, 7, 1-6.
  • [14] Amarnath, Y., Ramachandrudu, C. (2016). Properties of Foamed Concrete with Sisal Fibre. In Proceedings of the 9th International Concrete Conference 2016: Environment, Efficiency and Economic Challenges for Concrete, University of Dundee, Dundee, UK, 4-6.
  • [15] Raj, B., Dhanya S., Mini, K.M., Amritha R. (2020). Mechanical and durability properties of hybrid fiber reinforced foam concrete. Construction and Building Materials, 245, 118373.
  • [16] Amran, Y.H.M., Farzadnia, N. & Abang Ali, A.A. (2015). Properties and applications of foamed concrete; a review. Construction and Building Materials, 101, 990-1005.
  • [17] Nambiar, E.K.K. & Ramamurthy, K. (2007). Air-void characterisation of foam concrete. Cement and Concrete Research, 37(2), 221-230.
  • [18] Kunhanandan Nambiar, E.K. & Ramamurthy, K. (2008). Fresh state characteristics of foam concrete. Journal of Materials in Civil Engineering, 20(2), 111-117.
  • [19] Nambiar, E.K.K. & Ramamurthy, K. (2006). Influence of filler type on the properties of foam concrete. Cement and Concrete Composites, 28(5), 475-480.
  • [20] Onésippe, C., Passe-Coutrin, N., Toro, F., Delvasto, S., Bilba, K. & Arsène, M.A. (2010). Sugarcane bagasse fibres reinforced cement composites: thermal considerations. Composites Part A: Applied Science and Manufacturing, 41(4), 549-556.
  • [21] Defence Standard code 40-42 (2002). Foam liquids, Fire extinguishing. Ministry of Defence, 2, 5-11.
  • [22] Mydin, M.A.O. (2017). Preliminary studies on the development of lime-based mortar with added egg white. International Journal of Technology, 8(5), 800-810.
  • [23] Serri, E., Othuman Mydin, M.A. & Suleiman, M.Z. (2014). Thermal properties of Oil Palm Shell light-weight concrete with different mix designs. Jurnal Teknologi, 70(1), 155-159.
  • [24] Othuman Mydin, M.A., Sahidun, N.S., Mohd Yusof, M.Y. & Noordin, N.M. (2015). Compressive, flexural and splitting tensile strengths of lightweight foamed concrete with inclusion of steel fibre. Jurnal Teknologi, 75(5), 70-75.
  • [25] Youm, K.S., Moon, J., Cho, J.Y. & Kim, J.J. (2011). Experimental study on strength and durability of lightweight aggregate concrete containing silica fume. Construction and Building Materials, 114, 517-527.
  • [26] Raj, B., Sathyan, D., Madhavan, M.K. & Raj, A. (2020). Mechanical and durability properties of hybrid fiber reinforced foam concrete. Construction and Building Materials, 245, 118373.
  • [27] BS 196 (2005). Methods of testing cement. British Standards Institute, 2-8.
  • [28] BS 882 (1992). Specification for aggregates from natural sources for concrete. British Standards Institute, 1-4.
  • [29] ASTM C869-91(1999). Standard Specification for Foaming Agents Used in Making Preformed Foam for Cellular Concrete, ASTM International, 1-12
  • [30] ASTM C796 (1989). Standard Test Method for Foaming Agents for Use in Producing Cellular Concrete Using Preformed Foam, ASTM International, 1-3.
  • [31] De Klerk, M.D., Kayondo, M., Moelich, G.M., de Villiers, W.I., Combrinck, R., Boshoff, W.P. (2020). Durability of chemically modified sisal fibre in cement-based composites. Construction and Building Materials, 241, 117835.
  • [32] BS 12390-3 (2011). Testing hardened concrete. Compressive strength of test specimens. British Standards Institute, 1-8.
  • [33] BS EN 12390-5 (2019). Testing hardened concrete. Flexural strength of test specimens. British Standards Institute, 1-7.
  • [34] BS EN 12390-6 (2009). Testing hardened concrete. Tensile splitting strength of test specimens, British Standards Institute, 1-10.
  • [35] Zamzani, N.M., Mydin, M.A.O., Ghani, A.N.A. (2019). Effectiveness of 'cocos nucifera linn' fibre reinforcement on the drying shrinkage of lightweight foamed concrete. ARPN Journal of Engineering and Applied Sciences, 14, 3932-3937.
  • [36] Othuman Mydin, M.A., Rozlan, N.A., Ganesan, S. (2015). Experimental study on the mechanical properties of coconut fibre reinforced lightweight foamed concrete. Journal of Materials and Environmental Science, 6, 407-411.
  • [37] Mohamad, N., Iman, M.A., Mydin, M.A.O., Samad, A.A.A, Rosli, J.A., Noorwirdawati, A. (2018). Mechanical properties and flexure behaviour of lightweight foamed concrete incorporating coir fibre. IOP Conference Series: Earth and Environmental Science, 140, 012140.
  • [38] Serri, E., Suleiman, M.Z., Mydin, M.A.O. (2019). The effects of oil palm shell aggregate shape on the thermal properties and density of concrete. Advanced Materials Research, 935, 172-175.
  • [39] Suhaili, S.S., Mydin, M.A.O., Awang, H. (2021). Influence of Mesocarp Fibre Inclusion on Thermal Properties of Foamed Concrete. Journal of Advanced Research in Fluid Mechanic and Thermal Science, 87, 1-11.
  • [40] Mohamad, N., Samad, A.A.A., Lakhiar, M.T., Othuman Mydin, M.O., Jusoh, S., Sofia, A., Efendi, S.A. (2018). Effects of incorporating banana skin powder (BSP) and palm oil fuel ash (POFA) on mechanical properties of lightweight foamed concrete. International Journal of Integrated Engineering, 10, 169-176.
  • [41] Tambichik, M.A., Samad, A.A.A., Mohamad, N., Mohd Ali, A.Z., Othuman Mydin, M.A., Mohd Bosro, M.Z., Iman, M.A. (2018). Effect of combining Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) as partial cement replacement to the compressive strength of concrete. International Journal of Integrated Engineering, 10, 61-67.
  • [42] Serudin, A.M., Othuman, M.A.M., Ghani, A.N.A. (2021). Effect of lightweight foamed concrete confinement with woven fiberglass mesh on its drying shrinkage. Revista Ingeniería de Construcción, 36, 21-28.
  • [43] Kochova, K., Gauvin, F., Schollbach, K., Brouwers, H. (2020). Using alternative waste coir fibres as a reinforcement in cement fibre composites. Construction and Building Materials, 231, 117121.
  • [44] Awang, H., Mydin, M.A.O., Roslan, A.F. (2012). Effects of fibre on drying shrinkage, compressive and flexural strength of lightweight foamed concrete. Advanced Materials Research, 587, 144-149.
  • [45] Othuman Mydin, M.A., Mohamed Shajahan, M.F., Ganesan, S., Sani, N.M. (2014). Laboratory investigation on compressive strength and micro-structural features of foamed concrete with addition of wood ash and silica fume as a cement replacement. MATEC Web of Conferences, 17, 01004.
  • [46] Krishna, N.K., Prasanth, M., Gowtham, R., Karthic, S., Mini, K.M. (2018). Enhancement of properties of concrete using natural fibers. Materials Today, 5, 23816-23823.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-563e26a7-6684-4706-921e-0ae25897a1fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.