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Abstract 

The purpose of this paper was to investigate in practice the possibility of using 

evolutionary algorithms to solve the traveling salesman problem on a real example. 

The goal was achieved by developing an original implementation of the evolutionary 

algorithm in Python, and by preparing an example of the traveling salesman problem 

in the form of a directed graph representing Polish voivodship cities. As part of the 

work an application in Python was written. It provides a user interface which allows to 

set selected parameters of the evolutionary algorithm and solve the prepared problem. 

The results are presented in both text and graphical form. The correctness of the evolu-

tionary algorithm's operation and the implementation was confirmed by performed 

tests. A large number of tested solutions (2500) and the analysis of the obtained results 

allowed for a conclusion that an optimal (relatively suboptimal) solution was found. 

1. INTRODUCTION  

The subject of this paper is an implementation of an evolutionary algorithm, including 

all necessary genetic operators allowing for application of the algorithm to solving the 

traveling salesman problem non-trivial real-life cases (relatively difficult or impossible to 

solve with exact methods). Such cases do not need to concern hundreds or thousands of 

locations, but it should be possible to solve problems with a dozen or more than twenty 

locations. Such examples cannot be solved using exact algorithms due to excessively long 

computation time. 

The traveling salesman problem can be represented as a problem of finding a cycle in  

a directed graph. In this paper, geographic locations of cities in Poland were used. In the 

mathematical sense, it can be stated that every two cities, i.e. vertices of the graph, were 

connected by two edges with the same weight-distance, but with opposite directions. In other 

words, there was a road from city A to city B, and from city B to city A, and the lengths of 

the roads were equal. It was assumed that the distance between cities is equal to the distance 

on the Euclidean plane. In reality this assumption is not met. However, with a large distance 

between cities (e.g. voivodships), the differences between the Euclidean distance and the 

real one will be negligibly small. Therefore, it can be concluded that the obtained results are 

close to reality. 
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For the purposes of this paper an application was written in Python. The application 

includes an implementation of an evolutionary algorithm together with a decoding procedure 

and all necessary genetic operators. 

In addition, an example of the traveling salesman problem was developed based on the 

map of Poland. Sixteen voivodship cities were taken into account: Białystok, Bydgoszcz, 

Gdańsk, Katowice, Kielce, Kraków, Lublin, Łódź, Olsztyn, Opole, Poznań, Rzeszów, 

Szczecin, Warszawa, Wrocław, and Zielona Góra. It was assumed that there is a connection 

between each pair of cities, and the length of the connection was based on geolocation data 

of individual cities. Therefore, the problem solved was not simple and it can be predicted 

that the time of determining the optimal solution using exact methods (e.g., complete review, 

dynamic programming, or branch & bound methods) would be so long that the calculations 

would be ineffective (in terms of time waiting for the result). Hence it is a good example to 

be solved using heuristic algorithms, e.g., an evolutionary algorithm. 

2. EVOLUTIONARY ALGORITHM FOR THE TRAVELING SALESMAN 

PROBLEM 

The solution to the TSP problem can be written as a permutation of the first N natural 

numbers, where N is the number of vertices in the graph describing the problem. This means 

that each such permutation „codes” a solution, so it can be used as a genotype for an 

admissible solution of the TSP problem. 

The advantage of such coding is that it will always yield an acceptable solution to the 

problem. Also, crossover and mutation operators operating on permutations are described in 

the literature. 

A disadvantage of this coding method is the fact that many different permutations 

correspond to the same admissible solution. More important than the specific permutation is 

the relative arrangement of its elements. For example, in Fig. 1, two different permutations 

are shown that describe the same admissible solution to the TSP problem with ten locations. 

For N locations in the TSP problem, there will be exactly N different permutations that 

describe the same solution. 

 

Fig. 1. Two permutations of one solution 

2.1. Selection 

Selection is a very important stage of EA. Without it EA would basically be quite a 

complex random algorithm. 

The basic task of selection stage is the choosing individuals for the so-called reproductive 

pool. Individuals from this pool will be cross bred. Selection is based on the value of the so-

called fitness function of the individual. Better adapted individuals have a greater chance 

(probability) to be selected for the breeding pool. 



57 

 

The selection can be done in many ways. 

Relatively the most popular is the so-called roulette wheel selection. Each individual is 

assigned an area of the circle proportional to the value of its fitness function. The whole 

circle corresponds to the whole population. Choosing of an individual is based on a random 

selection of a point on the circumference of the circle: each point belongs to exactly one 

individual. The better-fitted individuals will have a better chance in such a draw, but even 

the least-fitted individuals can be selected. 

This form of selection has some disadvantages. The size of the part of the roulette wheel 

corresponding to the value of the individual's fitness function is most often calculated 

according to the formula: 

𝑠𝑖 =
𝑓𝑖

∑ 𝑓𝑖
𝑁
𝑖=1

             (1) 

where s is the size of the circle part of the i-th individual, and fi is the value of the fitness 

function. This formula works under the assumption that all individuals have positive fitness 

values, and that the higher the fitness function, the better. When these assumptions are not 

met, fitness function values need to be properly scaled before the roulette selection is 

applied. Another disadvantage of this selection method is the fact that real values are used, 

on which operations are not always performed with high accuracy. However, this is more of 

an implementation problem. 

Tournament selection is devoid of both disadvantages. It consists of a completely random 

selection of a certain number of individuals from the population, and then conducting  

a "tournament" between these individuals. The best adapted individual wins the tournament. 

Tournament selection is much simpler to implement and requires only comparison of the 

fitness function values of individuals. 

Due to the greater genetic diversity, the project decided to use roulette wheel selection.  

2.2. Crossover operators 

A permutation can be defined as an ordered set of elements containing all the elements 

of another set. For a set with N elements, the number of different permutations is N!. 

One point or two-point codings known from binary coding cannot be used for 

permutation coding. „Intersection” of two permutations at a randomly selected point (or 

points), and then exchanging parts of these permutations and thus creating an offspring will 

in most cases lead to the destruction of the permutation: the ordered result set will contain 

repeated elements, while other elements will not be present at all. 

Permutation coding has the advantage that many crossover operators operating on 

permutations are known. The most known include:  

 partially matched crossover (PMX) (Goldberg & Lingle, 1985), 

 cycle crossover (CX) (Oliver, et al., 1987), 

 order crossover (OX) (Davis, 1985). 

 

In this research the order crossover (Fig. 2) was chosen due to its relatively simple 

implementation and high efficiency in the case of the TSP problem (Abdoun & Abouchabaka, 

2011). 
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Fig. 2. Order crossover 

In this operator, a fragment of the genotypes of the parents is first selected. This fragment 

has constant length and includes genes at the same positions in both genotypes. The fragment 

from the second parent is copied to the first child, without any changes. The remaining genes, 

at positions outside the selected fragment, are completed in the first offspring from the genes 

of the first parent, according to the order of their occurrence in the first parent, omitting those 

genes that were copied from the second parent. 

The second offspring is created analogously with the role of both parents reversed.  

2.3. Mutation operator 

The mutation operator is relatively simple in comparison to the crossover operators used 

for permutations.  In mutation random changes are made in the genotype of an individual 

what can result in both favorable and unfavorable changes. Unfavorable changes will make 

the individual less adapted, and thus will have less chance of being selected for crossing by 

the selection operator. Positive changes, on the other hand, increase the fitness of an 

individual. In the best case, a mutation may occur that will result in a solution close to 

another local optimum, or even a global optimum. In the simplest case, two elements of the 

permutation should be chosen at random and swapped. 

More complex operators can also be used, for example consisting of several such 

exchanges, or swapping larger fragments of permutations. 

In this paper the RSM (reverse sequence mutation) mutation operator is used (Mousa, et al., 

2017), presented in Fig. 3. 

 

Fig. 3. Scheme of the RSM mutation operator 
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RSM operation is relatively simple. In the mutated genotype a fragment (string) of genes 

is selected. In this fragment, the order of the genes is then reversed. This operator is very 

easy to implement. 

3. RESEARCH 

An evolutionary algorithm can be implemented in various ways. Regardless of the 

implementation, one of the characteristics of EA is a large number of parameters on which 

its operation depends. Only two parameters were taken into account in the application: – 

population size, i.e., the number of individuals (solutions), – mutation coefficient, i.e. the 

probability that a given individual will be mutated. However, there can be many more 

parameters. For example, during a mutation, two (random) gene positions in the genotype 

are selected. These positions are selected from all genes. Therefore, it can be said that all 

genes in the genotype can (potentially) mutate, i.e., the range of the mutation operator is the 

entire genotype. This range could be limited if an additional parameter was adopted in the 

form of the maximum difference between the selected gene positions. Such a parameter was 

not introduced in the application, which means that its value was set at a constant level, equal 

to the size of the genotype. 

The values related to the stopping criteria can also be treated as input parameters for EA. 

Several different stopping criteria have been assumed in the application: 

 reaching an absolute number of generations, 

 no improvement (of the best found solution quality) for 200 populations. 

The number of recent generations where the best known solution has not improved is 

actually an EA parameter that has been set to a fixed value in the application. 

The problem of determining the value of EA parameters is not easy to solve, mainly due 

to their large number. This paper focuses on two parameters, population size and mutation 

rate. 

4. RESULTS AND CONCLUSIONS 

Five different population group sizes were studied: 20, 50, 100, 200 and 500 individuals. 

Each group was tested for five different values of the mutation rate: 0.02, 0.20, 0.50, 0.80 

and 1.00. All tests were performed exactly one hundred times. This gives a total of two and 

a half thousand individual tests. 

In the course of all experiments carried out, it was noticed that no better solution than 

2181 kilometers was ever obtained. Therefore, it was assumed that it is an optimal or 

suboptimal solution, which was used as a reference solution in further research. Due to the 

size of the problem, determining the optimal solution using the exact algorithm could take 

too long. 

4.1. The quality of the solutions 

The influence of the mutation parameter and the size of the population on the obtained 

results is shown in Fig. 4. All functions are non-decreasing, which means that as the mutation 

parameter increases, the quality of solutions improves, and more precisely, the frequency  
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of obtaining the best solutions increases. It can also be seen that the mutation is most 

important for small population groups. In larger groups, the influence of mutation coefficient 

is less significant. This means that for larger values of the mutation coefficient, the 

population will have a greater chance of getting out of the local minimum which is 

beneficial. 

 

Fig. 4. Effect of input parameters on the quality of solutions 

4.2. Number of iterations and best solutions 

During the research, the impact of the selection of mutation parameters and population 

size on the number of iterations at which the best solutions appeared was also checked  

(Fig. 5). The analysis of the plot shows an adverse effect of the increased mutation 

coefficient on the number of generated generations (time) until the appearance of the best 

individual. It was also noticed that with too small populations, the lack of or too low  

a mutation coefficient also had a negative effect on the number of iterations required to reach 

the state of the population with the best-fit individual. 

 

Fig. 5. Effect of input parameters on the number of iterations 
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It was therefore observed that too frequent mutations result in a slower rate of improve-

ment of the population. Nevertheless, a very small population falls into a local minimum 

quicker. With too low a mutation rate, it gets out of such trap more slowly, and thus, reach 

the best adaptation more slowly. It was also noticed that the most numerous populations 

evolve the fastest. 

5. SUMMARY 

It should be remembered that the purpose of the calculations is not to increase the chance 

of the population leaving the local minimum but to obtain the best possible solution 

(although one may be related to the other). The larger the population size, the longer the 

computation time. This results directly from the EA itself: individuals are subjected to 

different operators, so the more individuals in the population, the longer (in terms of time) 

these operations will be performed. Therefore, one should rather strive for a situation in 

which the size of the population is as small as possible at the same time maintaining solutions 

of good quality. 

The research shows that even in the case of small populations (eg. 20 individuals) it is 

possible to obtain a good (optimal or suboptimal) solution. Taking the calculation time into 

account, the value of the mutation coefficient should be at a relatively high level (0.50). Also 

the size of the population can be adjusted at the level of 50 individuals. 

To sum up, it can be stated that the selection of the values of the EA parameters is not  

a simple task - even considering only two parameters. Experiments (research) need to be 

carried out to obtain good results in a relatively short time. The resulting parameter values 

are appropriate for the problem analyzed in this paper, but they do not necessarily have to 

be appropriate for other problems. Although EA can be regarded as a "universal" tool that 

can be easily applied to solve problems of various classes, the choice of values for the 

algorithm parameters makes this application difficult. 

The conducted research also allowed to draw other conclusions. The most important is 

the fact that the relatively best results in the relatively shortest time can be obtained using  

a population size of 50 individuals, with a mutation rate of 0.50. EA is a stochastic algorithm, 

hence this regards only the probability of obtaining the result. It should therefore be 

concluded that for the given values of EA parameters, the probability of obtaining a good 

result is relatively high. 

During the research, it was also noticed that higher values of the mutation coefficient 

allow to achieve good results even with small populations. However, this comes at the cost 

of more generations. Reducing the size of the population reduces the computation time, 

which is beneficial. On the other hand, increasing the number of generations means 

increasing the computation time. It is therefore necessary to reach a certain compromise, 

which results in the previously mentioned values of the mutation coefficient and population 

size. 
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