

Applied Computer Science, vol. 19, no. 2, pp. 55–62

doi: 10.35784/acs-2023-14

55

Submitted: 2023-04-02 | Revised: 2023-04-30 | Accepted: 2023-05-03

Keywords: evolutionary algorithms, genetic algorithms,

traveling salesman problem, TSP

Tomasz SIKORA [0009-0009-2721-6796]*,

Wanda GRYGLEWICZ-KACERKA [0000-0003-4656-0540]**

APPLICATION OF GENETIC ALGORITHMS

TO THE TRAVELING SALESMAN PROBLEM

Abstract

The purpose of this paper was to investigate in practice the possibility of using

evolutionary algorithms to solve the traveling salesman problem on a real example.

The goal was achieved by developing an original implementation of the evolutionary

algorithm in Python, and by preparing an example of the traveling salesman problem

in the form of a directed graph representing Polish voivodship cities. As part of the

work an application in Python was written. It provides a user interface which allows to

set selected parameters of the evolutionary algorithm and solve the prepared problem.

The results are presented in both text and graphical form. The correctness of the evolu-

tionary algorithm's operation and the implementation was confirmed by performed

tests. A large number of tested solutions (2500) and the analysis of the obtained results

allowed for a conclusion that an optimal (relatively suboptimal) solution was found.

1. INTRODUCTION

The subject of this paper is an implementation of an evolutionary algorithm, including

all necessary genetic operators allowing for application of the algorithm to solving the

traveling salesman problem non-trivial real-life cases (relatively difficult or impossible to

solve with exact methods). Such cases do not need to concern hundreds or thousands of

locations, but it should be possible to solve problems with a dozen or more than twenty

locations. Such examples cannot be solved using exact algorithms due to excessively long

computation time.

The traveling salesman problem can be represented as a problem of finding a cycle in

a directed graph. In this paper, geographic locations of cities in Poland were used. In the

mathematical sense, it can be stated that every two cities, i.e. vertices of the graph, were

connected by two edges with the same weight-distance, but with opposite directions. In other

words, there was a road from city A to city B, and from city B to city A, and the lengths of

the roads were equal. It was assumed that the distance between cities is equal to the distance

on the Euclidean plane. In reality this assumption is not met. However, with a large distance

between cities (e.g. voivodships), the differences between the Euclidean distance and the

real one will be negligibly small. Therefore, it can be concluded that the obtained results are

close to reality.

* Akademia Humanistyczno-Ekonomiczna, Łódź, Poland, tomek.sikora@pm.me
** Akademia Humanistyczno-Ekonomiczna, Łódź, Poland, wgryglewicz@ahe.lodz.pl

https://orcid.org/0009-0009-2721-6796
https://orcid.org/0000-0003-4656-0540

56

For the purposes of this paper an application was written in Python. The application

includes an implementation of an evolutionary algorithm together with a decoding procedure

and all necessary genetic operators.

In addition, an example of the traveling salesman problem was developed based on the

map of Poland. Sixteen voivodship cities were taken into account: Białystok, Bydgoszcz,

Gdańsk, Katowice, Kielce, Kraków, Lublin, Łódź, Olsztyn, Opole, Poznań, Rzeszów,

Szczecin, Warszawa, Wrocław, and Zielona Góra. It was assumed that there is a connection

between each pair of cities, and the length of the connection was based on geolocation data

of individual cities. Therefore, the problem solved was not simple and it can be predicted

that the time of determining the optimal solution using exact methods (e.g., complete review,

dynamic programming, or branch & bound methods) would be so long that the calculations

would be ineffective (in terms of time waiting for the result). Hence it is a good example to

be solved using heuristic algorithms, e.g., an evolutionary algorithm.

2. EVOLUTIONARY ALGORITHM FOR THE TRAVELING SALESMAN

PROBLEM

The solution to the TSP problem can be written as a permutation of the first N natural

numbers, where N is the number of vertices in the graph describing the problem. This means

that each such permutation „codes” a solution, so it can be used as a genotype for an

admissible solution of the TSP problem.

The advantage of such coding is that it will always yield an acceptable solution to the

problem. Also, crossover and mutation operators operating on permutations are described in

the literature.

A disadvantage of this coding method is the fact that many different permutations

correspond to the same admissible solution. More important than the specific permutation is

the relative arrangement of its elements. For example, in Fig. 1, two different permutations

are shown that describe the same admissible solution to the TSP problem with ten locations.

For N locations in the TSP problem, there will be exactly N different permutations that

describe the same solution.

Fig. 1. Two permutations of one solution

2.1. Selection

Selection is a very important stage of EA. Without it EA would basically be quite a

complex random algorithm.

The basic task of selection stage is the choosing individuals for the so-called reproductive

pool. Individuals from this pool will be cross bred. Selection is based on the value of the so-

called fitness function of the individual. Better adapted individuals have a greater chance

(probability) to be selected for the breeding pool.

57

The selection can be done in many ways.

Relatively the most popular is the so-called roulette wheel selection. Each individual is

assigned an area of the circle proportional to the value of its fitness function. The whole

circle corresponds to the whole population. Choosing of an individual is based on a random

selection of a point on the circumference of the circle: each point belongs to exactly one

individual. The better-fitted individuals will have a better chance in such a draw, but even

the least-fitted individuals can be selected.

This form of selection has some disadvantages. The size of the part of the roulette wheel

corresponding to the value of the individual's fitness function is most often calculated

according to the formula:

𝑠𝑖 =
𝑓𝑖

∑ 𝑓𝑖
𝑁
𝑖=1

 (1)

where s is the size of the circle part of the i-th individual, and fi is the value of the fitness

function. This formula works under the assumption that all individuals have positive fitness

values, and that the higher the fitness function, the better. When these assumptions are not

met, fitness function values need to be properly scaled before the roulette selection is

applied. Another disadvantage of this selection method is the fact that real values are used,

on which operations are not always performed with high accuracy. However, this is more of

an implementation problem.

Tournament selection is devoid of both disadvantages. It consists of a completely random

selection of a certain number of individuals from the population, and then conducting

a "tournament" between these individuals. The best adapted individual wins the tournament.

Tournament selection is much simpler to implement and requires only comparison of the

fitness function values of individuals.

Due to the greater genetic diversity, the project decided to use roulette wheel selection.

2.2. Crossover operators

A permutation can be defined as an ordered set of elements containing all the elements

of another set. For a set with N elements, the number of different permutations is N!.

One point or two-point codings known from binary coding cannot be used for

permutation coding. „Intersection” of two permutations at a randomly selected point (or

points), and then exchanging parts of these permutations and thus creating an offspring will

in most cases lead to the destruction of the permutation: the ordered result set will contain

repeated elements, while other elements will not be present at all.

Permutation coding has the advantage that many crossover operators operating on

permutations are known. The most known include:

 partially matched crossover (PMX) (Goldberg & Lingle, 1985),

 cycle crossover (CX) (Oliver, et al., 1987),

 order crossover (OX) (Davis, 1985).

In this research the order crossover (Fig. 2) was chosen due to its relatively simple

implementation and high efficiency in the case of the TSP problem (Abdoun & Abouchabaka,

2011).

58

Fig. 2. Order crossover

In this operator, a fragment of the genotypes of the parents is first selected. This fragment

has constant length and includes genes at the same positions in both genotypes. The fragment

from the second parent is copied to the first child, without any changes. The remaining genes,

at positions outside the selected fragment, are completed in the first offspring from the genes

of the first parent, according to the order of their occurrence in the first parent, omitting those

genes that were copied from the second parent.

The second offspring is created analogously with the role of both parents reversed.

2.3. Mutation operator

The mutation operator is relatively simple in comparison to the crossover operators used

for permutations. In mutation random changes are made in the genotype of an individual

what can result in both favorable and unfavorable changes. Unfavorable changes will make

the individual less adapted, and thus will have less chance of being selected for crossing by

the selection operator. Positive changes, on the other hand, increase the fitness of an

individual. In the best case, a mutation may occur that will result in a solution close to

another local optimum, or even a global optimum. In the simplest case, two elements of the

permutation should be chosen at random and swapped.

More complex operators can also be used, for example consisting of several such

exchanges, or swapping larger fragments of permutations.

In this paper the RSM (reverse sequence mutation) mutation operator is used (Mousa, et al.,

2017), presented in Fig. 3.

Fig. 3. Scheme of the RSM mutation operator

59

RSM operation is relatively simple. In the mutated genotype a fragment (string) of genes

is selected. In this fragment, the order of the genes is then reversed. This operator is very

easy to implement.

3. RESEARCH

An evolutionary algorithm can be implemented in various ways. Regardless of the

implementation, one of the characteristics of EA is a large number of parameters on which

its operation depends. Only two parameters were taken into account in the application: –

population size, i.e., the number of individuals (solutions), – mutation coefficient, i.e. the

probability that a given individual will be mutated. However, there can be many more

parameters. For example, during a mutation, two (random) gene positions in the genotype

are selected. These positions are selected from all genes. Therefore, it can be said that all

genes in the genotype can (potentially) mutate, i.e., the range of the mutation operator is the

entire genotype. This range could be limited if an additional parameter was adopted in the

form of the maximum difference between the selected gene positions. Such a parameter was

not introduced in the application, which means that its value was set at a constant level, equal

to the size of the genotype.

The values related to the stopping criteria can also be treated as input parameters for EA.

Several different stopping criteria have been assumed in the application:

 reaching an absolute number of generations,

 no improvement (of the best found solution quality) for 200 populations.

The number of recent generations where the best known solution has not improved is

actually an EA parameter that has been set to a fixed value in the application.

The problem of determining the value of EA parameters is not easy to solve, mainly due

to their large number. This paper focuses on two parameters, population size and mutation

rate.

4. RESULTS AND CONCLUSIONS

Five different population group sizes were studied: 20, 50, 100, 200 and 500 individuals.

Each group was tested for five different values of the mutation rate: 0.02, 0.20, 0.50, 0.80

and 1.00. All tests were performed exactly one hundred times. This gives a total of two and

a half thousand individual tests.

In the course of all experiments carried out, it was noticed that no better solution than

2181 kilometers was ever obtained. Therefore, it was assumed that it is an optimal or

suboptimal solution, which was used as a reference solution in further research. Due to the

size of the problem, determining the optimal solution using the exact algorithm could take

too long.

4.1. The quality of the solutions

The influence of the mutation parameter and the size of the population on the obtained

results is shown in Fig. 4. All functions are non-decreasing, which means that as the mutation

parameter increases, the quality of solutions improves, and more precisely, the frequency

60

of obtaining the best solutions increases. It can also be seen that the mutation is most

important for small population groups. In larger groups, the influence of mutation coefficient

is less significant. This means that for larger values of the mutation coefficient, the

population will have a greater chance of getting out of the local minimum which is

beneficial.

Fig. 4. Effect of input parameters on the quality of solutions

4.2. Number of iterations and best solutions

During the research, the impact of the selection of mutation parameters and population

size on the number of iterations at which the best solutions appeared was also checked

(Fig. 5). The analysis of the plot shows an adverse effect of the increased mutation

coefficient on the number of generated generations (time) until the appearance of the best

individual. It was also noticed that with too small populations, the lack of or too low

a mutation coefficient also had a negative effect on the number of iterations required to reach

the state of the population with the best-fit individual.

Fig. 5. Effect of input parameters on the number of iterations

61

It was therefore observed that too frequent mutations result in a slower rate of improve-

ment of the population. Nevertheless, a very small population falls into a local minimum

quicker. With too low a mutation rate, it gets out of such trap more slowly, and thus, reach

the best adaptation more slowly. It was also noticed that the most numerous populations

evolve the fastest.

5. SUMMARY

It should be remembered that the purpose of the calculations is not to increase the chance

of the population leaving the local minimum but to obtain the best possible solution

(although one may be related to the other). The larger the population size, the longer the

computation time. This results directly from the EA itself: individuals are subjected to

different operators, so the more individuals in the population, the longer (in terms of time)

these operations will be performed. Therefore, one should rather strive for a situation in

which the size of the population is as small as possible at the same time maintaining solutions

of good quality.

The research shows that even in the case of small populations (eg. 20 individuals) it is

possible to obtain a good (optimal or suboptimal) solution. Taking the calculation time into

account, the value of the mutation coefficient should be at a relatively high level (0.50). Also

the size of the population can be adjusted at the level of 50 individuals.

To sum up, it can be stated that the selection of the values of the EA parameters is not

a simple task - even considering only two parameters. Experiments (research) need to be

carried out to obtain good results in a relatively short time. The resulting parameter values

are appropriate for the problem analyzed in this paper, but they do not necessarily have to

be appropriate for other problems. Although EA can be regarded as a "universal" tool that

can be easily applied to solve problems of various classes, the choice of values for the

algorithm parameters makes this application difficult.

The conducted research also allowed to draw other conclusions. The most important is

the fact that the relatively best results in the relatively shortest time can be obtained using

a population size of 50 individuals, with a mutation rate of 0.50. EA is a stochastic algorithm,

hence this regards only the probability of obtaining the result. It should therefore be

concluded that for the given values of EA parameters, the probability of obtaining a good

result is relatively high.

During the research, it was also noticed that higher values of the mutation coefficient

allow to achieve good results even with small populations. However, this comes at the cost

of more generations. Reducing the size of the population reduces the computation time,

which is beneficial. On the other hand, increasing the number of generations means

increasing the computation time. It is therefore necessary to reach a certain compromise,

which results in the previously mentioned values of the mutation coefficient and population

size.

62

REFERENCES

Abdoun, O. & Abouchabaka, J. (2011). A Comparative Study of Adaptive Crossover Operators for Genetic

Algorithms to Resolve the Traveling Salesman Problem. arXiv.

https://doi.org/10.48550/arXiv.1203.3097

Abellanas, M. R., & López-Ibáñez, M. (2008). An Introduction to the Traveling Salesman Problem. International

Journal of Combinatorial Optimization Problems and Informatics, 1(1), 1-11.

doi:10.4018/jcopi.2008010101

Crainic, T. G., Fodor, J., & Grigoras, C. (2007). A Hybrid Evolutionary Algorithm for the Traveling Salesman

Problem. IEEE Intelligent Systems, 22(2), 41-48. doi:10.1109/MIS.2007.37

Davis, L. (1985). Applying Adaptive Algorithms to Epistatic Domains. Proceedings of the 9th International

Joint Conference on Artificial Intelligence, (vol 1, pp. 162-164).

Gao, Y., & Li, X. (2018). A Novel Hybrid Evolutionary Algorithm for the Traveling Salesman Problem. IEEE

Access, 6, 7072-7081. doi:10.1109/ACCESS.2018.2848862

Goldberg, D. & Lingle, R. (1985). Alleles, Loci and the Traveling Salesman Problem. Proceedings of the 1st

International Conference on Genetic Algorithms and Their Applications, (pp. 154-159).

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Boston: Addison-

Wesley Longman Publishing Co.

Grefenstette, J. J. (1986). Optimization of Control Parameters for Genetic Algorithms. IEEE Transactions on

Systems, Man, and Cybernetics, 16(1), 122-128. https://doi.org/10.1109/TSMC.1986.289287

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications

to Biology, Control, and Artificial Intelligence. Ann Arbor: University of Michigan Press.

https://doi.org/10.7551/mitpress/1090.001.0001

Kumar, S., & Sharma, S. (2017). A Novel Hybrid Genetic Algorithm for Solving Traveling Salesman Problem.

International Journal of Computer Applications, 159(2), 1-7. doi:10.5120/ijca2017914072

Liao, Y. F., Yau, D. H., & Chen, C. L. (2012). Evolutionary algorithm to traveling salesman problems. Computers

& Mathematics with Applications, 64(5), 788-797. https://doi.org/10.1016/j.camwa.2011.12.018

Dry, M., Lee, M. D., Vickers, D., & Hughes, P. (2006). Human Performance on Visually Presented Traveling

Salesperson Problems with Varying Numbers of Nodes. The Journal of Problem Solving, 1(1).

Mousa, A. A., El-Shorbagy, M. A. & Farag, M. A. (2017). K-means-Clustering Based Evolutionary Algorithm

for Multi-objective Resource Allocation Problems. Applied Mathematics & Information Sciences. 11(6),

1681-1692. https://doi.org/10.18576/amis/110615

Oliver, I. M., Smith, D. j., & Holland, J. R. C. (1987). A Study of Permutation Crossover Operators on the

Traveling Salesman Problem. International Conference on Genetic Algorithms. (pp. 224-230).

Macgregor, J. N., & Ormerod, T. (1996). Human performance on the traveling salesman problem. Perception &

Psychophysics, 58(4), 527–539. https://doi.org/10.3758/BF03213088

Zieliński, D., & Dereniowski, D. (2015). Evolutionary Algorithm for Solving the Traveling Salesman Problem.

International Journal of Computer Science, 12(2), 1-7.

