PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of the processes in electrical systems by two-point problem for nonhomogeneous telegraph equation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie procesów w systemach elektrycznych za pomocą problemu dwupunktowego dla niejednorodnego równania
Języki publikacji
EN
Abstrakty
EN
The two-point problem for the nonhomogeneous telegraph equation is a mathematical model to describe propagation of electromagnetic wavesunder the action of external force at given behavior of the process at two time moments. The differential-symbol method of constructing an exact analytical solution of the problem is proposed. The class of quasipolynomials as a class of existence and uniqueness of the solution of the problem is indicated. The examples to research propagation of waves with two given states are proposed. The presented results can be effectively used in the design and studying of parameters of the electrical engineering systems.
PL
Problem dwupunktowy dla niejednorodnego równania telegraficznego jest matematycznym modelem opisu propagacji fal elektromagnetycznych pod działaniem siły zewnętrznej przy danym zachowaniu się procesu w dwóch momentach czasowych. Zaproponowano metodę różniczkowo-symboliczną konstruowania dokładnego analitycznego rozwiązania tego problemu. Wskazano klasę quasi-wielomianów jako klasę istnienia i jednoznaczności rozwiązania problemu. Zaproponowano przykłady do badania propagacji fal o dwóch zadanych stanach. Przedstawione wyniki mogą być efektywnie wykorzystane w projektowaniu i badaniu parametrów systemów elektrotechnicznych.
Rocznik
Strony
54--57
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Lublin University of Technology, Lublin, Poland
  • Lviv Polytechnic National University, Lviv, Ukraine
  • Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
autor
  • Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
  • Poltava V.G. Korolenko National Pedagogical University
  • Vinnytsia National Technical Univerty, Ukraine
  • East Kazakhstan State Technical University named after D.Serikbayev, Ust-Kamenogorsk, Kazakhstan
  • Academy of Logistics and Transport, Kazakhstan
Bibliografia
  • [1] Manchanda, P.;Lozi, R.; Hasan, A. (2020). Mathematical modelling, optimization, analytic and numerical solutions. Springer, Singapore.ISBN 978-981-15-0928-5.
  • [2] Vistak, M.; Dmytrakh, V.; Mykytyuk, Z.; Petryshak, V.; Horbenko, Y. (2017). “A liquid crystal-based sensitive element for optical sensors of cholesterol”. Functional Materials, 24 (4). pp.687-691. doi. 10.15407/fm24.04.687
  • [3] Sushynskyi,O.; Vistak,M.; Dmytrah,V.(2016). “The sensitive element of primary transducer of protein optical sensor”. Proceedings of the 13th Intern. Conf. TCSET, no 7452075, pp. 418-421. doi: 10.1109/TCSET.2016.7452075
  • [4] Prystay,T.V.; Mykytyuk,Z.M.; Sushynskyi,O.Y.; Fechan, A. V.; Vistak, M.V. (2015). “Nanocomposite based on a liquid crystal doped with aluminum nitride nanotubes for optical sensor of sulfur dioxide”. J. Society for Information Display, 23(9),pp.438- 442. doi: 10.1002/jsid.380.
  • [5] Hotra, Z.; Mykytyuk,Z.; Diskovskyi, I; Barylo, G.; Vezyr, F. (2018). 14th Intern. Conf. on Advanced Trend in Radioelectronics, Telecom. and Comp. Enginering (Lviv- Slavske, 2018), pp.716-719. doi: 10.1109/TCSET.2018.8336300
  • [6] Wójcik, W.; Mykytyuk,Z.; Vistak, M.; Barylo, G.; Politanskyi, R.; Diskovskyi, I.; Kremer, I.; Ivakh, M.; Kotsun, W. (2020). “Optical sensor with liquid crystal sensitive element for amino acids detection”. Przeglad Elektrotechniczny, 96 (4), pp. 178-181. doi: 10.15199/48.2020.04.3
  • [7] Kogut,I.T.; Holota,V.I.; Druzhinin,A.A.; Dovhij,V.V. (2016). “The device-technological simulation of local 3D SOI-structures”, Journal of Nano Research, 39, pp.228–234
  • [8] Pollitanskyi, R. I.;Vistak, M. V.;Barylo, G. I.;Andrushchak, A. S. (2020) “Simulation of anti-reflecting dielectric films by the interference matrix method”. Optical Materials. 102: 109782.ISSN: 0925-3467. doi.org/10.1016/j.optmat.2020.109782.
  • [9] Kurpa L. V.;Linnyk G.B. (2011). Equations of Mathematical Physics. NTU «KPI», Kharkiv. http://repository.kpi.kharkov.ua/handle/KhPI-Press/4630.
  • [10] Kalenyuk, P.; Nytrebych, Z.(1999).“On operational method of solving initial-value problems for partial differential equations induced by generalized separation of variables”. J. Math. Sci. 97(1). pp. 3879–3887. ISSN1072-3374. doi.org/10.1007/BF02364928
  • [11] Ptashnyk, B.; Symotyuk, M. (2003). “Multipoint problem for nonisotropic partial differential equations with constant coefficients”.Ukr. Math.Journ. 55(2). pp. 293–310. doi.org/10.1023/A:1025468413500
  • [12] Nitrebich, Z. M. (1996). “An operator method of solving the Cauchy problem for a homogeneous system of partial differential equations”.Journ. Math. Sci. 81(6).pp. 3034– 3038.ISSN:1072-3374. doi.org/10.1007/BF02362589.
  • [13] Kalenyuk, P.; Kohut, I.; Nytrebych, Z. (2012). “Problem with integral condition for partial differential equation of the first order with respect to time”.J. Math. Sci. 181(3).pp. 293–304. ISSN1072-3374. doi.org/10.1007/s10958-012-0685-7.
  • [14] Srivastava, V.; Awasthi, M.; Chaurasia, R.; Tamsir, M. (2013). “The Telegraph Equation and Its Solution by Reduced Differential Transform Method”. Modelling and Simulation in Engineering, 2013: 746351.ISSN: 1687-5591. doi.org/10.1155/2013/746351.
  • [15] Lock, C.G.; Greeff, J.C.;Joubert, S.V. (2008). “Modeling of telegraph equation in transmission line”. Proceeding of TIME 2008, (Buffelspoort, South AfSica, september 2008). pp. 138– 148. doi: 10.13140/2.1.1577.6326.
  • [16] Jordan, P. M.;Puri, A. (1999). “Digital signal propagation in dispersive media”. J. Appl. Phys. 85(3).pp. 1273–1282.ISSN: 0021-8979. https://doi.org/10.1063/1.369258.
  • [17] Goldstein, S. (1951). “On diffusion by discontinuous movements and the telegraph equation”. Quart. J. Mech. Appl. Math. 4. pp. 129–156. ISSN 0033-5614. https://doi.org/10.1093/qjmam/4.2.129
  • [18] Weston, V.H.; He, S. (1993). “Wave splitting of the telgraph equation in R3 and its application to inverse scattering”. Inverse problem. 9(6). pp. 789–812.ISSN: 0266-5611. https://ui.adsabs.harvard.edu/#abs/1993InvPr...9..789W. doi:10.1088/0266-5611/9/6/013
  • [19] Banasiak, J.; Mika, J. R. (1998). “Singularly perturbed telegraph equations with applications in the random walk theory”. J. Appl. Math. Stoch. Anal. 11(1).pp. 9–28.ISSN 1048- 9533. doi.org/10.1155/S1048953398000021.
  • [20] Mohanty, R. K. (2004). “An unconditionally stable difference scheme for the one-space-dimensional linear hyperbolic equation”. Applied Mathematics Letters.17(1).pp. 101–105. ISSN: 0893-9659. doi.org/2F10.1016/2FS0893-9659(04)90019- 5.
  • [21] Dehghan, M.;Ghesmati, A. (2010). “Combination of meshless local weak and strong forms to solve the two dimensional hyperbolic telegraph equation”. Engineering Analysis with Boundary Elements.34(4). pp. 324–336.ISSN: 0955-7997. doi.org%2F10.1016%2Fj.enganabound.2009.10.010.
  • [22] Jang, T. S. (2015). “A new solution procedure for the nonlinear telegraph equation”.Communications in Nonlinear Science and Numerical Simulation. 29.pp. 307–326. ISSN1007-5704. doi.org/10.1016/j.cnsns.2015.05.004.
  • [23] Srivastava, V. K.; Awasthi, M. K.;Chaurasia, R.K. (2014). “Reduced differential transform method to solve two and three dimensional second order hyperbolic telegraph equations”.Journal of King Saud University. 29(2). pp. 166– 171.ISSN: 1018-3647. doi: 10.1016/j.jksues.2014.04.010.
  • [24] Akhmetov,O.; Mingalev,V.; Mingalev I. (2018). “Solution of Cauchy problem for the three-dimensional telegraph equation and exact solutions of Maxwell’s equations in a homogeneous isotropic conductor with a given exterior current source”. Comp.Math.and Math.Physics. 58(4).pp. 604–611. ISSN0965- 5425. doi.org/10.1134/S0965542518040036
  • [25] Jiwari, R.; Pandit, S.; Mittal, R. A. (2012). “A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions”. Appl. Math. Comput. 218.pp. 7279– 7294.ISSN0096-3003. doi.org/10.1016/j.amc.2012.01.006.
  • [26] Ostapenko, V. A. (2012). “Mixed initial-boundary value problem for telegraph equation in domain with variable borders”. Advanced in Mathematical Physics. 5: 831012.ISSN: 1687- 9139. doi.org/10.1155/2012/831012.
  • [27] Saadatmandy, A.;Dehghan, M. (2010). “Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method”. Numerical methods Partial Diff. Eq. 26. pp. 239– 252.ISSN:1098-2426. doi.org/10.1002/num.20442.
  • [28] Raftari, B.; Yildirim, A. (2012). “Analytical solution of second order hyperbolic telegraph equation by variation iteration and homotopy perturbation methods”. Results Math. 61(1-2).pp. 13–28.ISSN1422-6383. doi.org/10.1007/s00025-010-0072-y.
  • [29] Nytrebych, Z. M.;Malanchuk, O. M. (2017). “The differentialsymbol method of solving the two-point problem with respect to time for a partial differential equation”. J. Math. Sci. 224(4).pp. 541–554. ISSN1072-3374. doi.org/10.1007/s10958-017-3434- 0.
  • [30] Malanchuk, O.; Nytrebych, Z. (2017). “Homogeneous two-point problem for PDE of the second order in time variable and infinite order in spatial variables”. Open Math. 15(1). pp. 101– 110. ISSN: 2391-5455. doi.org/10.1515/math-2017-0009
  • [31] Nytrebych, Z.;Malanchuk, O. (2019). “The conditions of existence of a solution of the two-point in time problem for nonhomogeneous PDE”. Ital. J. of Pure and Appl. Mathematics. 41. pp. 242–250. ISSN 2239-0227.
  • [32] Sachaniuk-Kavetska, N. V.;Pedorchenko, L. I. (2005). Equations of Mathematical Physics, VNTU, Vinnytsia.
  • [33] Nytrebych, Z. M.;Malanchuk, O. M. (2017). “The differentialsymbol method of solving the problem two-point in time for a nonhomogeneous partial differential equation”. J. Math. Sci. 227(1). pp. 68–80.ISSN1072-3374. doi.org/2F10.1007/2Fs10958-017-3574-2.
  • [34] Kulias, A.I. (2017). Cybernetics and Systems Analysis, 53(6), pp. 847-856.
  • [35] Krak, I.V.; Kryvonos, I.G.; Kulias, A.I.(2013). “Applied aspects of the synthesis and analysis of voice information”. Cybernetics and Systems Analysis, 49(4). pp. 589-596.
  • [36] Kuznetsov, V.; Krak, I.; Barmak, O.; Kirichenko, M.F.; Krak, Yu.V. (2019). “Facial expressions analysis for applications in the study of sign language” CEUR Workshop Proceedings, 2353. pp. 159-172.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5639b9ef-0bc5-46d9-9bbd-8ec31d264ad0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.