PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization programming tools supporting supply chain management

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The issue of transportation is a particular type of mathematical programming that facilitates searching for and determining an optimal distribution network, considering the set of suppliers and recipients. This paper uses a numerical example to present a solution to a transport problem utilizing classical computation methods, i.e., the northwest corner, the least cost in a matrix, and the VAM approximation method. The objective of the paper was to develop tools in the form of algorithms that would then be implemented in three various computing environments (R, GNU Octave, and Matlab) that allow us to optimize transport costs within an assumed supply network. The model involved determining decision variables and indicating limiting conditions. Furthermore, the authors interpreted and visualized the obtained results. The implementation of the proposed solution enables users to determine an optimal transport plan for individually defined criteria.
Rocznik
Strony
art. no. e145570
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Military University of Technology, Cybernetics Faculty, gen. Kaliskiego 2, 00-908 Warsaw, Poland
  • Military University of Technology, Faculty of Mechanical Engineering, gen. Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] T. Can and H. Koçak, “Tuncay Can’s Approximation Method to obtain initial basic feasible solution to transport problem,” Appl. Comput. Math., vol. 5, no. 2, pp. 78–82, 2016, doi: 10.11648/j.acm.20160502.17.
  • [2] G. Kovács, “Novel supply chain concepts and optimization of virtual enterprises to reduce cost, increase productivity and boost competitiveness,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 6, pp. 973–980, 2018, doi: 10.24425/bpas.2018.125945.
  • [3] Z. Banaszak, W. Muszyński, and G. Bocewicz, “Models of multimodal networks and transport processes,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 3, pp. 635–650, 2015, doi: 10.1515/bpasts-2015-0075.
  • [4] M. Tamannaei and M. Rasti-Barzoki, “Mathematical programming and solution approaches for minimizing tardiness and transportation costs in the supply chain scheduling problem,” Comput. Ind. Eng., vol. 127, pp. 643–656, 2019, doi: 10.1016/j.cie.2018.11.003.
  • [5] J. Ziółkowski, M. Oszczypała, J. Małachowski, and J. Szkutnik-Rogoż, “Use of Artificial Neural Networks to Predict Fuel Consumption on the Basis of Technical Parameters of Vehicles,” Energies, vol. 14, no. 9, p. 2639, 2021, doi: 10.3390/en14092639.
  • [6] J. Ziółkowski, A. Lęgas, E. Szymczyk, J. Małachowski, M. Oszczypała, and J. Szkutnik-Rogoż, “Optimization of the Delivery Time within the Distribution Network, Taking into Account Fuel Consumption and the Level of Carbon Dioxide Emissions into the Atmosphere,” Energies, vol. 15, no. 14, p. 5198, 2022, doi: 10.3390/en15145198.
  • [7] J. An, A. Mikhaylov, and S.-U. Jung, “A Linear Programming approach for robust network revenue management in the airline industry,” J. Air Transp. Manag., vol. 91, p. 101979, 2021, doi: 10.1016/j.jairtraman.2020.101979.
  • [8] M. Izdebski, I. Jacyna-Gołda, P. Gołębiowski, and J. Plandor, “The optimization tool supporting supply chain management in the multi-criteria approach,” Arch. Civ. Eng., vol. 66, no. 3, pp. 505–524, 2020, doi: 10.24425/ACE.2020.134410.
  • [9] K. Tabaka, “The Practices of Transportation Organization in Metropolitan Areas. The Grenoble Example,” Studia KPZK, vol. 174, pp. 1–10, 2017, doi: 10.24425/118546.
  • [10] A. Brzeziński, K. Brzeziński, T. Dybicz, and Ł. Szymański, “The Application of a Logistic Regression Model for Predicting Preferences of Transport System Users,” Arch. Civ. Eng., vol. 64, no. 4, pp. 145–159, 2018, doi: 10.2478/ace-2018-0049.
  • [11] G. Padma Karthiyayini, S. Ananthalakshmi, and R. Usha Parameswari, “An innovative method to solve transportation problem based on a statistical tool,” Adv. Math. Sci. J., vol. 9, no. 5, pp. 2533–2539, 2020, doi: 10.37418/amsj.9.5.16.
  • [12] H.A. Hussein and M.A.K. Shiker, “A Modification to Vogel’s Approximation Method to Solve Transportation Problems,” J. Phys.-Conf. Ser., 2020, vol. 1591, pp. 1–12, doi: 10.1088/1742-6596/1591/1/012029.
  • [13] K. Karagul and Y. Sahin, “A novel approximation method to obtain initial basic feasible solution of transportation problem,” J. King Saud Univ.-Eng. Sci., vol. 32, no. 3, pp. 211–218, 2020, doi: 10.1016/j.jksues.2019.03.003.
  • [14] E. Angelelli, V. Morandi, M. Savelsbergh, and M.G. Speranza, “System optimal routing of traffic flows with user constraints using linear programming,” Eur. J. Oper. Res., vol. 293, no. 3, pp. 863–879, 2021, doi: 10.1016/j.ejor.2020.12.043.
  • [15] S. Mancini and M. Gansterer, “Vehicle routing with private and shared delivery locations,” Comput. Oper. Res., vol. 133, pp. 1–12, 2021, doi: 10.1016/j.cor.2021.105361.
  • [16] M. Salehi, M. Jalalian, and M.M. Vali Siar, “Green transportation scheduling with speed control: trade-off between total transportation cost and carbon emission,” Comput. Ind. Eng., vol. 113, pp. 392–404, 2017, doi: 10.1016/j.cie.2017.09.020.
  • [17] A. Mhlanga, I.S. Nduna, D.F. Matarise, and A. Machisvo, “Innovative application of Dantzig’s North – West Corner Rule to solve a transportation problem,” Int.l J. Educ. Res., vol. 2, no. 2, pp. 1–12, 2014.
  • [18] M. Venkatachalapathy, R. Pandiarajan, and S. Ganeshkumar, “A special type of solving transportation problems using generalized quadratic fuzzy number,” Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 6344–6348, 2020.
  • [19] Ö. Kirca and A. ¸Satir, “A heuristic for obtaining an initial solution for the transportation problem,” J. Oper. Res. Soc., vol. 41, no. 9, pp. 865–871, 1990, doi: 10.1057/jors.1990.124.
  • [20] M. Mathirajan and B. Meenakshi, “Experimental analysis of some variants of Vogel’s approximation method,” Asia-Pac. J. Oper. Res., vol. 21, no. 4, pp. 447–462, 2004, doi: 10.1142/S0217595904000333.
  • [21] Z.A.M.S. Juman and M.A. Hoque, “An efficient heuristic to obtain a better initial feasible solution to the transportation problem,” Appl. Soft Comput. J., vol. 34, pp. 813–826, 2015, doi: 10.1016/j.asoc.2015.05.009.
  • [22] T. Imam, G. Elsharawy, M. Gomah, and I. Samy, “Solving transportation problem using object-oriented model,” Int. J. Comput. Sci. Netw. Secur., vol. 9, no. 2, pp. 353–361, 2009.
  • [23] O. Adeoye Akeem, E.M. Igbinehi, B. Babalola John, and K.S. Emiola Olawale, “Programming Development on Transportation Problem using C++ and Stepping Stone for Evaluation,” Intl J. Adv. Res. Comput. Sci., vol. 6, no. 1, pp. 177-184, 2015.
  • [24] P.L. Pallavi and R.A. Lakshmi, “A Mat Lab oriented approach to solve the transportation problem,” Int. J. Adv. Res. Found., vol. 2, no. 11, pp. 1–4, 2015.
  • [25] J.K. Appati, G.K. Gogovi, and G.O. Fosu, “MATLAB implementation of Vogel’s approximation and the modified distribution methods,” Int. J. Adv. Comput. Technol., vol. 4, no. 1, pp. 1449–1453, 2015.
  • [26] P. Ghadle Kirtiwant and M. Muley Yogesh, “New approach to solve assignment problem using MATLAB,” Int. J. Latest Technol. Eng. Manag. Appl. Sci., vol. 4, no. 1, pp. 36–39, 2015.
  • [27] D.J. Sengamalaselvi, “Solving transportation problem by using MATLAB,” Int. J. Eng. Sci. Res. Technol., vol. 6, no. 1, pp. 374–381, 2017.
  • [28] B. Zhang, “The Optimization of Distribution Path of Fresh Cold Chain Logistics Based on Genetic Algorithm,” Comput. Intell. Neurosci., vol. 2022, pp. 1–10, 2022, doi: 10.1155/2022/4667010.
  • [29] L. Cui, Y. Liu, and Z. Liu, “Research on mathematical modeling of order and transshipment optimal distribution,” in 5th International Symposium on Big Data and Applied Statistics, ISB-DAS 2022, 2022, vol. 2294, no. 1, pp. 1–7, doi: 10.1088/1742-6596/2294/1/012036.
  • [30] H. Liu, P. Zhan, and M. Zhou, “Optimization of a Logistics Transportation Network Based on a Genetic Algorithm,” Mobile Inf. Syst., vol. 2022, pp. 1–8, 2022, doi: 10.1155/2022/1271488.
  • [31] S. Nagar, Introduction to Octave: For Engineers and Scientists. New York, USA: Apress, 2018, doi: 10.1007/978-1-4842-3201-9.
  • [32] J. Szkutnik-Rogoż, J. Ziółkowski, J. Małachowski, and M. Oszczypała, “Mathematical programming and solution approaches for transportation optimisation in supply network,” Energies, vol. 14, no. 21, p. 7010, 2021, doi: 10.3390/en14217010.
  • [33] M. Krynke, K. Mielczarek, and O. Kiriliuk, “Cost Optimization and Risk Minimization during Teamwork Organization,” Manag. Syst. Prod. Eng. vol. 29, no. 2, pp. 145–150, 2021, doi: 10.2478/mspe-2021-0019.
  • [34] M. Krynke and K. Mielczarek, “Applications of linear programming to optimize the cost-benefit criterion in production processes,” in 12th International Conference Quality Production Improvement, QPI 2018, 2018, vol. 183, pp. 1–6, doi: 10.1051/matecconf/201818304004.
  • [35] G. Baskaran, A. Bargiela, and R. Qu, “Simulation of scheduling and cost effectiveness of nurses using domain transformation method,” in 28th European Conference on Modelling and Simulation, ECMS 2014, 2014, pp. 226–234, doi: 10.7148/2014-0226.
  • [36] S.-C. Georgescu, “HBMOA applied to design a water distribution network for a town of 50000 inhabitants,” Univ. Politeh. Buchar. Sci. Bull. Ser. D-Mech. Eng., vol. 74, no. 1, pp. 91–102, 2012.
  • [37] W. Song, “Building Construction Design Based on Particle Swarm Optimization Algorithm,” J. Control Sci. Eng., vol. 2022, pp. 1–8, 2022, doi: 10.1155/2022/7139230.
  • [38] H. Kotthaus, I. Korb, M. Engel, and P. Marwedel, “Dynamic page sharing optimization for the R language,” ACM SIGPLAN Notices, vol. 50, no. 2, pp. 79–90, 2015, doi: 10.1145/2661088.2661094.
  • [39] S.T. Mueller, B.S. Perelman, and E.S. Veinott, “An optimization approach for mapping and measuring the divergence and correspondence between paths,” Behav. Res. Methods, vol. 48, no. 1, pp. 53–71, 2016, doi: 10.3758/s13428-015-0562-7.
  • [40] J. Nash, “On best practice optimization methods in R,” J. Stat. Softw., vol. 60, no. 2, pp. 1–14, doi: 10.18637/jss.v060.i02.
  • [41] T.-Y. Li, X.-N. Lyu, F. Li, and Y. Chen, “Routing optimization model and algorithm for takeout distribution with multiple fuzzy variables under dynamics demand,” Control Decis., vol. 34, no. 2, pp. 406–413, 2019, doi: 10.13195/j.kzyjc.2017.1105.
  • [42] S. Hore, A. Chatterjee, and A. Dewanji, “Improving variable neighborhood search to solve the traveling salesman problem,” Appl. Soft Comput. J., vol. 68, pp. 83–91, 2018, doi: 10.1016/j.asoc.2018.03.048.
  • [43] A.G. Dos Passos and M.A. Luersen, “Multi-objective optimization with kriging surrogates using ‘moko’, an open source package,” Lat. Am. J. Solids Struct., vol. 15, no. 10, pp. 1–17, 2018, doi: 10.1590/1679-78254324.
  • [44] R.R. Lekan, L.C. Kavi, and N.A. Neudauer, “Maximum Difference Extreme Difference Method for Finding the Initial Basic Feasible Solution of Transportation Problems,” Appl. Appl. Math.-Int. J., vol. 16, no. 1, pp. 345–360, 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5638ee4c-f71a-42c2-b1b9-089b6eba1c17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.