Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Metale wysokotopliwe jako dodatki stopowe materiałów metalicznych kształtowanych metodami metalurgii proszków
Języki publikacji
Abstrakty
Methods for the fabrication of metallic sinters via powder metallurgy techniques have been widely discussed in materials engineering for many years. Depending on the final purpose of the finished products, it is primarily important to ensure their appropriate mechanical properties. Numerous works on this topic are devoted mainly to the modification of conventional metallic materials, and one of the promising research directions is the addition of refractory metals to metal alloys. Thanks to the advantageous impact on thermal stability, mechanical properties, and corrosion resistance, the proposed solutions fit perfectly into the trends of searching for new, functional engineering materials. This work presents a review of scientific reports on the modification of metal alloys with the addition of refractory metals published over the last 15 years. First, a brief characterization of refractory metals along with a description of the basics of processing metallic materials using powder metallurgy are presented. In the following part of the article, the research results on the influence of the addition of high-melting metals on the mechanical properties and corrosion resistance of heavy and light metal alloys are discussed. The conclusion consists of data on the global metal alloys market, taking into account its current state and forecasted changes for the next few years.
Metody spieków metalicznych technikami metalurgii proszków są szeroko omawiane w inżynierii materiałowej od wielu lat. Niezależnie od przewidywanego przeznaczenia gotowych wyrobów istotne jest przede wszystkim zapewnienie produktom odpowiednich własności mechanicznych. Liczne prace poświęcone tej tematyce skupiają się głównie na modyfikacji konwencjonalnych materiałów metalicznych, a jednym z obiecujących kierunków badań jest wzbogacanie stopów metali dodatkiem metali wysokotopliwych. Dzięki korzystnemu wpływowi na stabilność termiczną, własności mechaniczne i odporność na korozję proponowane rozwiązania doskonale wpisują się w poszukiwania nowych, funkcjonalnych materiałów inżynierskich. Praca stanowi przegląd doniesień naukowych opublikowanych w ciągu ostatnich 15 lat, traktujących o modyfikacji stopów metali dodatkiem metali wysokotopliwych. W pierwszej kolejności przedstawiono krótką charakterystykę metali wysokotopliwych wraz z omówieniem podstaw przetwarzania materiałów metalicznych z wykorzystaniem metalurgii proszków. W dalszej części artykułu przeprowadzono analizę wyników badań nad wpływem dodatku metali wysokotopliwych na własności mechaniczne oraz odporność korozyjną stopów metali ciężkich i lekkich. W podsumowaniu przybliżono dane dotyczące stanu globalnego rynku stopów metali wraz z uwzględnieniem zmian prognozowanych na najbliższe lata.
Wydawca
Czasopismo
Rocznik
Tom
Strony
68--76
Opis fizyczny
Bibliogr. 54 poz., tab., wykr.
Twórcy
autor
- Doctoral School, Silesian University of Technology, Gliwice, Poland
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute for Engineering of Polymer Materials and Dyes, Toruń, Poland
autor
- Nanotechnology and Materials Technology Scientific and Didactic Laboratory, Silesian University of Technology, Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, Gliwice, Poland
Bibliografia
- [1] U.R. Kiran, A. Panchal, M.P. Kumar, M. Sankaranarayana, G.V.S. Nageswara Rao, T.K. Nandy. 2017. “Refractory Metal Alloying: A New Method for Improving Mechanical Properties of Tungsten Heavy Alloys.” Journal of Alloys and Compounds 709: 609–619. DOI: 10.1016/j.jallcom.2017.03.174.
- [2] H.H. Xi, P.F. He, G.Z. Ma, Z.L. Lv, H.D. Wang, M. Liu, Z.G. Xing, S.Y. Chen. 2019. “Microstructure and Mechanical Properties of Supersonic Plasma Sprayed Mo-Based Coating Reinforced by Re.” Surface and Coatings Technology 378: 124966. DOI: 10.1016/j.surfcoat.2019.124966.
- [3] Y. Ishijima, K. Kakiuchi, T. Furuya, H. Kurishita, M. Hasegawa, T. Igarashi, M. Kawai. 2002. “Corrosion Resistance of Refractory Metals in High-Temperature Water.” Journal of Nuclear Materials 307–311(Part 2): 1369–1374. DOI: 10.1016/S0022-3115(02)01066-8.
- [4] S. Kumar, A.A. Rao. 2017. “Influence of Coating Defects on the Corrosion Behavior of Cold Sprayed Refractory Metals.” Applied Surface Science 396: 760–773. DOI: 10.1016/j.apsusc.2016.11.022.
- [5] W. Knabl, G. Leichtfried, R. Stickler. 2018. Refractory Metals and Refractory Metal Alloys. In: H. Warlimont, W. Martienssen (eds.). Springer Handbook of Materials Data. Cham, Switzerland: Springer.
- [6] C.L. Briant. 2001. Refractory Metals and Alloys. In: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (eds.). Encyclopedia of Materials: Science and Technology. Amsterdam: Elsevier. DOI: 10.1016/B0-08-043152-6/01453-4.
- [7] N.N. Greenwood, A. Earnshaw. 2010. Chemistry of the Elements. Amsterdam: Elsevier.
- [8] E.M. Savitskii, G.S. Burkhanov. 2012. Physical Metallurgy of Refractory Metals and Alloys. New York: Springer.
- [9] L. Zhang, X. Li, X. Qu, M. Qin, Z. Que, Z. Wei, C. Guo, X. Lu, Y. Dong. 2023. “Powder Metallurgy Route to Ultrafine-Grained Refractory Metals.” Advanced Materials 35(50): 2205807. DOI: 10.1002/adma.202205807.
- [10] J.R. Ciulik, J.A. Shields, Jr., P. Kumar, T. Leonhardt, J.L. Johnson. 2015. Properties and Selection of Powder Metallurgy Refractory Metals. In: P. Samal, J. Newkirk (eds.). ASM Handbook: Powder Metallurgy. ASM International. DOI: 10.31399/asm.hb.v07.a0006123.
- [11] L.L. Snead, D.T. Hoelzer, M. Rieth, A.A.N. Nemith. 2019. Refractory Alloys: Vanadium, Niobium, Molybdenum, Tungsten. In: G.R. Odette, S.J. Zinkle (eds.). Structural Alloys for Nuclear Energy Applications. Amsterdam: Elsevier. DOI: 10.1016/B978-0-12-397046-6.00013-7. [12] J. Wadsworth, T.G. Nieh, J.J. Stephens. 1988. “Recent Advances in Aerospace Refractory Metal Alloys.” International Materials Reviews 33(1): 131–150. DOI: 10.1179/imr.1988.33.1.131. [13] W. A. Kaysser, W. Weise. 2000. Ullmann’s Encyclopedia of Industrial Chemistry: Powder Metallurgy and Sintered Materials. Wiley-VCH. DOI: 10.1002/ 14356007.a22_105.
- [14] J.P. Adams. 2015. History of Powder Metallurgy. In: P. Samal, J. Newkirk (eds.). ASM Handbook: Powder Metallurgy. ASM International. DOI: 10.31399/asm. hb.v07.a0006017.
- [15] H.M. Ortner, P. Ettmayer, H. Kolaska. 2014. “The History of the Technological Progress of Hardmetals.” International Journal of Refractory Metals and Hard Materials 44: 148–159. DOI: 10.1016/j.ijrmhm.2013.07.014.
- [16] W.B. James. 2015. Powder Metallurgy Methods and Applications. In: P. Samal, J. Newkirk (eds.). ASM Handbook: Powder Metallurgy. ASM International. DOI: 10.31399/asm.hb.v07.a0006022.
- [17] S. Lampman. 2015. Compressibility and Compactibility of Metal Powders. In: P. Samal, J. Newkirk (eds.). ASM Handbook: Powder Metallurgy. ASM International. DOI: 10.31399/asm.hb.v07.a0006032.
- [18] ISO 3252:2023: Powder metallurgy – Vocabulary.
- [19] H.E. Exner, E. Arzt. 2012. Sintering Processes. In: S. Sōmiya, Y. Moriyoshi (eds.). Sintering Key Papers. Dordrecht: Springer. DOI: 10.1007/978-94-009-0741- 6_10.
- [20] J. E. Blendell, W. Rheinheimer. 2021. Solid-State Sintering. In: M. Pomeroy (ed.). Encyclopedia of Materials: Technical Ceramics and Glasses. Vol. 1. Amsterdam: Elsevier. DOI: 10.1016/B978-0-12-803581-8.12084-3.
- [21] S.-J. L. Kang. 2010. Liquid Phase Sintering. In: Z. Z. Fang. Sintering of Advanced Materials. Oxford: Woodhead Publishing. DOI: 10.1533/ 9781845699949.1.110.
- [22] K. I. Rybakov, E. A. Olevsky, E.V. Krikun. 2013. “Microwave Sintering: Fundamentals and Modeling.” Journal of the American Ceramic Society 96(4): 1003–1020. DOI: 10.1111/jace.12278. [23] M. Rosiński, M.J. Kruszewski, A. Michalski, E. Fortuna-Zaleśna, Ł. Ciupiński, K.J. Kurzydłowski. 2011. “W/Steel Joint Fabrication Using the Pulse Plasma Sintering (PPS) Method.” Fusion Engineering and Design 86(9–11): 2573– 2576. DOI: 10.1016/j.fusengdes.2011.01.083.
- [24] V. Mamedov. 2002. “Spark Plasma Sintering as Advanced PM Sintering Method.” Powder Metallurgy 45(4): 322–328. DOI: 10.1179/003258902225007041.
- [25] N.S. Weston, B. Thomas, M. Jackson. 2019. “Processing Metal Powders via Field Assisted Sintering Technology (FAST): A Critical Review.” Materials Science and Technology 35(11): 1306–1328. DOI: 10.1080/02670836.2019.1620538.
- [26] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing. 2015. “Review of Selective Laser Melting: Materials and Applications.” Applied Physics Reviews 2(4): 041101. DOI: 10.1063/1.4935926.
- [27] F. Ternero, L.G. Rosa, P. Urban, J.M. Montes, F.G. Cuevas. 2021. “Influence of the Total Porosity on the Properties of Sintered Materials – A Review.” Metals 11(5): 730. DOI: 10.3390/met11050730.
- [28] Z. Cen, Z. Dong, Z. Xu, F.Z. Yao, L. Guo, L. Li, X. Wang. 2021. “Improving Fatigue Properties, Temperature Stability and Piezoelectric Properties of KNN-Based Ceramics via Sintering in Reducing Atmosphere.” Journal of the European Ceramic Society 41(8): 4462–4472. DOI: 10.1016/j. jeurceramsoc.2021.03.007.
- [29] D. K. Koli, G. Agnihotri, R. Purohit. 2015. “Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields.” Materials Today: Proceedings 2(4–5): 3032–3041. DOI: 10.1016/j. matpr.2015.07.290.
- [30] G. Matula, M. Bonek, L.A. Dobrzański. 2010. “Comparison of Structure and Properties of Hard Coatings on Commercial Tool Materials Manufactured with the Pressureless Forming Method or Laser Treatment.” Materials Science Forum 638–642: 1830–1835. DOI: 10.4028/www.scientific.net/MSF.638- 642.1830.
- [31] Y. Jianhong, X. Kuangdi. 2024. Powder Metallurgy Alloys for Electrical Applications. In: K. Xu (ed.). The ECPH Encyclopedia of Mining and Metallurgy. Singapore: Springer. DOI: 10.1007/978-981-19-0740-1_1461-1.
- [32] K. Munir, A. Biesiekierski, C. Wen, Y. Li. 2020. Powder Metallurgy in Manufacturing of Medical Devices. In: C. Wen (ed.). Metallic Biomaterials Processing and Medical Device Manufacturing. Woodhead Publishing. DOI: 10.1016/B978-0- 08-102965-7.00005-9.
- [33] B.S.L. Prasad, A.R. Annamalai. 2021. “Effect of Rhenium Addition on Tungsten Heavy Alloys Processed through Spark Plasma Sintering.” Ain Shams Engineering Journal 12(3): 2957–2963. DOI: 10.1016/j.asej.2021.02.022.
- [34] Y. Jin, S. Cao, J. Zhu, H. Liu, B. Chen, H. Xu. 2014. “Gradient Structure Induced by Molybdenum in 90W-Ni-Fe Heavy Alloy.” International Journal of Refractory Metals and Hard Materials 43: 141–146. DOI: 10.1016/j. ijrmhm.2013.11.017.
- [35] Z. Wang, Y. Yuan, K. Arshad, J. Wang, Z. Zhou, J. Tang, G.H. Lu. 2017. “Effects of Tantalum Concentration on the Microstructures and Mechanical Properties of Tungsten-Tantalum Alloys.” Fusion Engineering and Design 125: 496– 502. DOI: 10.1016/j.fusengdes.2017.04.082.
- [36] C. Ren, Z.Z. Fang, M. Koopman, H. Zhang. 2018. “The Effects of Molybdenum Additions on the Sintering and Mechanical Behavior of Ultrafine-Grained Tungsten.” Recent Advances in Design and Development of Refractory Metals and Alloys 70: 2567–2573. DOI: 10.1007/s11837-018-3119-2.
- [37] D. Yu, X. Bi, L. Xing, Q. Zhang. 2023. “Microstructural Evolution and Mechanical Properties of Spark Plasma Sintering of Tantalum-Tungsten Alloy.” Metals 13(3): 533. DOI: 10.3390/met13030533.
- [38] M. Sopata, P. Siwak, G. Adamek, J. Jakubowicz. 2020. “The Mechanical Properties of the Novel Nanocrystalline Refractory Tantalum Alloys.” Nanoscale and Nanostructured Materials and Coatings 56: 759–765. DOI: 10.1134/S2070205120040231.
- [39] D.S. Liu, R.P. Liu, Y.H. Wei. 2014. “Influence of Tungsten on Microstructure and Wear Resistance of Iron Base Hardfacing Alloy.” Materials Science and Technology 30(3): 316–322. DOI: 10.1179/1743284713Y.0000000359.
- [40] M.A. Erden, N. Yaşar, M.E. Korkmaz, B. Ayvacı, K.N.S. Ross, M. Mia. 2021. “Investigation of Microstructure, Mechanical and Machinability Properties of Mo-Added Steel Produced by Powder Metallurgy Method.” International Journal of Advanced Manufacturing Technology 114: 2811–2827. DOI: 10.1007/ s00170-021-07052-z.
- [41] J. M. Bai, P.Y. Xing, H. P. Zhang, X. K. Li, J.T. Liu, J. Jia, Q. S. Sun, C. S. Liu, Y.W. Zhang. 2021. “Effect of Tantalum on the Microstructure Stability of PM Ni-Base Superalloys.” Materials Characterization 179: 111326. DOI: 10.1016/j. matchar.2021.11132
- [42] K. Majchrowicz, Z. Pakieła, T. Brynk, B. Romelczyk-Baishya, M. Płocińska, T. Kurzynowski, E. Chlebus. 2019. “Microstructure and Mechanical Properties of Ti-Re Alloys Manufactured by Selective Laser Melting.” Materials Science and Engineering: A 765: 138290. DOI: 10.1016/j.msea.2019.138290.
- [43] Y. Ren, P. Chen, Z. Li, Z. Zhang, Y. Lv, C. Zhang. 2021. “Effect of Strain Rate on the Mechanical Properties of a Tungsten Particle Reinforced Titanium Matrix Composite.” Journal of Materials Research and Technology 15: 984– 995. DOI: 10.1016/j.jmrt.2021.08.097.
- [44] C. Wang, Q. Cai, J. Liu, X. Yan. 2022. “Strengthening Mechanism of Lamellar- -Structured Ti-Ta Alloys Prepared by Powder Metallurgy.” Journal of Materials Research and Technology 21: 2868–2879. DOI: 10.1016/j.jmrt.2022.10.095.
- [45] W. Xu, M. Chen, X. Lu, D. Zhang, H. Singh, J. Yu, Y. Pan, X. Qu, C. Liu. 2020. “Effects of Mo Content on Corrosion and Tribocorrosion Behaviours of Ti- -Mo Orthopaedic Alloys Fabricated by Powder Metallurgy.” Corrosion Science 168: 108557. DOI: 10.1016/j.corsci.2020.108557.
- [46] W. Xu, Z. Liu, X. Lu, J. Tian, G. Chen, B. Liu, Z. Li, X. Qu, C. Wen. 2019. “Porous Ti-10Mo Alloy Fabricated by Powder Metallurgy for Promoting Bone Regeneration.” Science China Materials 62(7): 1053–1064. DOI: 10.1007/s40843-018- 9394-9.
- [47] R. Bauri, D. Yadav, C. N. S, Kumar, B. Balaji. 2015. “Tungsten Particle Reinforced Al 5083 Composite with High Strength and Ductility.” Materials Science and Engineering: A 620: 67–75. DOI: 10.1016/j.msea.2014.09.108.
- [48] L. Guo, Z. Zhang, B. Li, Y. Xue. 2014. “Modeling the Constitutive Relationship of Powder Metallurgy Al-W Alloy at Elevated Temperature.” Materials and Design 64: 667–674. DOI: 10.1016/j.matdes.2014.08.031.
- [49] H. Zhao, L. Xie, C. Xin, N. Li, B. Zhao, L. Li. 2023. “Effect of Molybdenum Content on Corrosion Resistance and Corrosion Behavior of Ti-Mo Titanium Alloy in Hydrochloric Acid.” Materials Today Communications 34: 105032. DOI: 10.1016/j.mtcomm.2022.105032.
- [50] A. R. Shankar, U. K. Mudali. 2013. “Refractory Metal Coatings on Titanium to Improve Corrosion Resistance in Nitric Acid Medium.” Surface and Coatings Technology 235: 155–164. DOI: 10.1016/j.surfcoat.2013.07.028.
- [51] Y. Lin, Y. Chen, Z. Tong, Z. Hu, Z. Gao. 2023. “Effect of Rhenium on Corrosion Behavior of Electrodeposited Co-Cu Alloy Coating at Room Temperature and High Temperature.” Materials Today Communications 35: 105579. DOI: 10.1016/j.mtcomm.2023.105579.
- [52] K. Patel, M. Sadeghilaridjani, M. Pole, S. Mukherjee. 2021. “Hot Corrosion Behavior of Refractory High Entropy Alloys in Molten Chloride Salt for Concentrating Solar Power Systems.” Solar Energy Materials and Solar Cells 230: 111222. DOI: 10.1016/j.solmat.2021.111222.
- [53] D. Yan, K. Song, H. Sun, S. Wu, K. Zhao, H. Zhang, S. Yuan, J. Tae Kim, N. Chawake, O. Renk, A. Hohenwarter, L. Wang, J. Eckert. 2020. “Microstructures, Mechanical Properties, and Corrosion Behaviors of Refractory High-Entropy ReTaWNbMo Alloys.” Journal of Materials Engineering and Performance 29: 399–409. DOI: 10.1007/s11665-019-04540-y.
- [54] Global Market Insights. 2022. Metal Alloys Market – By Material (Stainless Steel Alloys, Aluminum Alloys, Bronze Alloys, Nickel Alloys), By Process (Casting, Hot and Cold Rolling), By Application (Transportation, Construction, Packaging, Machinery, Electrical) and Forecast, 2022–2030.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-562f1f6d-2a66-41e9-9eff-4851a16a889a