PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hot carrier photocurrent induced by 0.92 eV photon energy radiation in a Si solar cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Absorption of the below-bandgap solar radiation and direct pre-thermalizational impact of a hot carrier (HC) on the operation of a single-junction solar cell are ignored by the Shockley-Queisser theory. The detrimental effect of the HC is generally accepted only via the thermalization-caused heating of the lattice. Here, the authors demonstrate experimental evidence of the HC photocurrent induced by the below-bandgap 0.92 eV photon energy radiation in an industrial silicon solar cell. The carriers are heated both through direct free-carrier absorption and by residual photon energy remaining after the electron-hole pair generation. The polarity of the HC photocurrent opposes that of the conventional generation photocurrent, indicating that the total current across the p-n junction is contingent upon the interplay between these two currents. A model of current-voltage characteristics analysis allowing us to obtain a reasonable value of the HC temperature was also proposed. This work is remarkable in two ways: first, it contributes to an understanding of HC phenomena in photovoltaic devices, and second, it prompts discussion of the HC photocurrent as a new intrinsic loss mechanism in solar cells.
Rocznik
Strony
art. no. e150181
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
  • Laboratory of Electronic Processes, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
  • Department of Physics, Vilnius Gediminas Technical University, Saulėtekio Ave. 11, LT-10223 Vilnius, Lithuania
  • Laboratory of Electronic Processes, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
  • Department of Physics, Vilnius Gediminas Technical University, Saulėtekio Ave. 11, LT-10223 Vilnius, Lithuania
  • Laboratory of Electronic Processes, Center for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
Bibliografia
  • [1] Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510-519 (1961). https://doi.org/10.1063/1.1736034.
  • [2] Hirst, L. C. & Ekins-Daukes, N. J. Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19, 286-293 (2011). https://doi.org/10.1002/pip.1024.
  • [3] Zhang, Y. et al. A review on thermalization mechanisms and prospect absorber materials for the hot carrier solar cells. Sol. Energy Mater. Sol. Cells 225, 1-13 (2021). https://doi.org/10.1016/j.solmat.2021.111073.
  • [4] Masalskyi, O. & Gradauskas, J. Pre-themalizational effect of hot carriers on photovoltage formation in a solar cell. Ukr. J. Phys. Opt. 23, 117-125 (2022). https://doi.org/10.3116/16091833/23/3/117/2022.
  • [5] Schroder, D. K., Thomas, R. N. & Swartz, J. C. Free carrier absorption in silicon. IEEE J. Solid-State Circuits 13, 180-187 (1978). https://doi.org/10.1109/JSSC.1978.1051012.
  • [6] Dargys, A. & Kundrotas, J. Physical data for gallium arsenide. Handbook on Physical Properties of Ge, Si, GaAs, and InP (Science and Encyclopedia, Vilnius, 1994).
  • [7] Ašmontas, S. & Sužiedelis, A. New microwave detector. J. Infrared Millim. Terahrtz Waves 15, 525-538 (1994). https://doi.org/10.1007/BF02096235.
  • [8] Anbinderis, M. et al. Microwave Detection Characteristics of Gated Asymmetrical Selectively Doped Semiconductor Structures at the Power and Frequency Variation. in 2nd IEEE Ukrainian Microwave Week (UkrMW) 79-83 (IEEE, 2022). https://doi.org/10.1109/UkrMW58013.2022.10037063.
  • [9] Zabudsky, V., Dobrovolsky, V. & Momot, N. Detection of terahertz and sub-terahertz wave radiation based on hot-carrier effect in narrow-gap Hg1-xCdxTe. Opto-Electron. Rev. 18, 300-304 (2010). https://doi.org/10.2478/s11772-010-1026-7.
  • [10] Encinas-Sanz, F. & Guerra, J. M. Laser-induced hot carrier photovoltaic effects in semiconductor junctions. Prog. Quantum Electron. 27, 267-194 (2003). https://doi.org/10.1016/S0079-6727(03)00002-8.
  • [11] Umeno, M., Sugito, Y., Jimbo, T., Hattori, H. & Amenixa, Y. Hot photo-carrier and hot electron effects in p-n junctions. Solid-State Electron. 21, 191-195 (1978). https://doi.org/10.1016/0038-1101(78)90137-5.
  • [12] Ašmontas, S., Gradauskas, J., Seliuta, D. & Širmulis, E. Photoelectrical properties of nonuniform semiconductor under infrared laser radiation. Proc. SPIE 4423, Nonresonant Laser-Matter Interaction (NLMI-10) (2001). https://doi.org/10.1117/12.431223.
  • [13] Kempa, K. et al. Hot electron effect in nanoscopically thin photovoltaic junctions. Appl. Phys. Lett. 95, 1-3 (2009). https://doi.org/10.1063/1.3267144.
  • [14] Shayan, S., Matloub, S. & Rostami, A. Efficiency enhancement in a single bandgap silicon solar cell considering hot-carrier extraction using selective energy contacts. Opt. Express 29, 5068-5080 (2021). https://doi.org/10.1364/OE.416932.
  • [15] Kolodinski, S., Werner, J. H., Wittchen, Th. & Queisser H. J. Quantum efficiencies exceeding unity due to impact ionization in silicon solar cells. Appl. Phys. Lett. 63, 2405-2407 (1993). https://doi.org/10.1063/1.110489.
  • [16] Fast, J., Aeberhard, U., Bremner, S. P. & Linke, H. Hot-carrier optoelectronic devices based on semiconductor nanowires. Appl. Phys. Rev. 8, 1-23 (2021). https://doi.org/10.1063/5.0038263.
  • [17] Saeed, S., de Jong, E., Dohnalova, K. & Gregorkiewicz, T. Efficient optical extraction of hot-carrier energy. Nat. Commun. 5, 1-5 (2014). https://doi.org/10.1038/ncomms5665.
  • [18] Ross, R. T. & Nozik, A. J. Efficiency of hot‐carrier solar energy converters. J. Appl. Phys. 53, 1-7 (1982). https://doi.org/10.1063/1.331124.
  • [19] Conibeer, G. et al. Progress on hot carrier cells. Sol. Energy Mater. Sol. Cells 93, 713-719 (2009). https://doi.org/10.1016/j.solmat.2008.09.034.
  • [20] König, D. et al. Hot carrier solar cells: Principles, materials and design. Phys. E: Low-Dimens. Syst. Nanostructures 42, 2862-2866 (2010). https://doi.org/10.1016/j.physe.2009.12.032.
  • [21] Tesser, L., Whitney, R. S. & Splettstoesser, J. Thermodynamic performance of hot-carrier solar cells: A quantum transport model. Phys. Rev. Appl. 19, 044038 (2023). https://doi.org/10.1103/PhysRevApplied.19.044038.
  • [22] Zhang, Y., Conibeer, G., Liu, Sh., Zhang J. & Guillemoles, J.‐F. Review of the mechanisms for the phonon bottleneck effect in III–V semiconductors and their application for efficient hot carrier solar cells. Prog. Photovolt. 30, 581-596 (2022). https://doi.org/10.1002/pip.3557.
  • [23] Zhang, Y., Conibeer, G., Zhang, J. & Xiang, W. Study the mechanisms of phonon bottleneck effect in CdSe/CdS core/shell quantum dots and nanoplatelets and their application for hot carrier multi-junction solar cells. Nanoscale Adv. 5, 5594-5600 (2023). https://doi.org/10.1039/d3na00557g.
  • [24] Austin, R. et al. Hot carrier extraction from 2D semiconductor photoelectrodes. Proc. Natl. Acad. Sci. USA 120, e2220333120 (2023). https://doi.org/10.1073/pnas.2220333120.
  • [25] Ašmontas, S. et al. CO2 laser induced hot carrier photoeffect in HgCdTe. Mater. Sci. Forum 384-385, 147-150 (2002). https://doi.org/10.4028/www.scientific.net/MSF.384-385.147.
  • [26] Ašmontas, S., Gradauskas, J., Naudjyus, K. & Širmulis, E. Photoresponse of InSb-based p-n structures during illumination by a CO2 laser. J. Semicond. 28, 1089 (1994).
  • [27] Ašmontas, S. et al. Hot carrier impact on photovoltage formation in solar cells. Appl. Phys. Lett. 113, 071103 (2018). https://doi.org/10.1063/1.5043155.
  • [28] Shiteng, W. et al. Hot-carrier infrared detection in PbS with ultrafast and highly sensitive responses. Appl. Phys. Lett. 120, 042101 (2022). https://doi.org/10.1063/5.0078394.
  • [29] Gradauskas, J. et al. Influence of hot carrier and thermal components on photovoltage formation across the p–n junction. Appl. Sci. 10, 7483 (2020). https://doi.org/10.3390/app10217483.
  • [30] Marmur, I. Ya. & Oksman, O. Effect of 10.6 μm laser radiation on the current of a forward biased photodiode. J. Semicond. 11, 2121-2124 (1975). [in Russian].
  • [31] Bristow, A. D., Rotenberg, N. & van Driel, H. M. Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm. Appl. Phys. Lett. 90, 191104 (2007). https://doi.org/10.1063/1.2737359.
  • [32] Schaffner, J. S. & Shea, R. F. The Variation of the Forward Characteristics of Junction Diodes with Temperature. in Int. IEEE Conf. of the Institute of Radio Engineers (IRE) vol. 43 (IEEE, 1955).
  • [33] Green, M. A., Emery, K. & Blakers, A. W. Silicon solar cells with reduced temperature sensitivity. Electron. Lett. 18, 97-98 (1982). https://doi.org/10.1049/el:19820066.
  • [34] Zhao, J., Wang, A., Robinson, S. J. & Green M. A. Reduced temperature coefficients for recent high-performance silicon solar cells. Prog. Photovolt. 2, 221-225 (1994). https://doi.org/10.1002/pip.4670020305.
  • [35] Cotfas, D. T., Cotfas, P. A. & Machidon, O. M. Study of temperature coefficients for parameters of photovoltaic cells. Int. J. Photoenergy 2018, 59456022 (2018). https://doi.org/10.1155/2018/5945602.
  • [36] Sato, S. A., Shinohara, Y., Otobe, T. & K. Yabana. Dielectric response of laser-excited silicon at finiteelectron temperature. Phys. Rev. B 90, 174303 (2014). https://doi.org/10.1103/PhysRevB.90.174303.
  • [37] Pelouch, W. S. et al. Comparison of hot-carrier relaxation in quantum wells and bulk GaAs at high carrier densities. Phys. Rev. B 45, 1450-1453 (1992). https://doi.org/10.1103/physrevb.45.1450.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-562a3008-582e-4a6a-bb36-5de55d64b80c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.