PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of incorporation of nanotitania in magnesium phosphate cement for the protection of carbon steel in harsh environments

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Corrosion is a major challenge to ensuring the durability and structural integrity of steel structures, particularly under harsh environmental conditions. In this work, we explored the possibility of incorporating nanotitania (TiO2) into magnesium phosphate cement (MPC) coatings to improve the corrosion resistance of low-carbon steel (LCS). Magnesium phosphate cement (MPC) has great potential to replace conventional organic coatings because of its corrosion resistance and sustainability. Titanium dioxide (TiO2) nanoparticles are included in the MPC coating to protect steel structures from corrosion because of their effectiveness in preventing them from decreasing the lifespan of steel. The material characterization of the MPC/TiO2 coatings was conducted using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) methods. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to assess the corrosion resistance of the coated and uncoated samples in a 3.5% NaCl solution. EIS measurements revealed that the MPC/TiO2 coatings, particularly those containing 10% TiO2, exhibited superior anti-corrosion properties. The resistance (Rcoat) measured for this coating was 1.22E10 Ω cm2, and the charge transfer resistance (Rct) reached 1.50E12 Ω cm2, demonstrating remarkable corrosion protection. The accelerated corrosion test proves that the inclusion of 10% nanotitania in the MPC controls the delamination of the coating. Additionally, the adhesion strength of 18.1 MPa for the MPC/10TiO2 coating confirms the durability of the coating. Only a small percentage of weight loss and adhesion loss were observed after 28 days of immersion in a corrosive NaCl environment, demonstrating the long-term durability of the MPC/TiO2 coatings. The findings of this study indicate that adding 10% TiO2 to MPC coatings has enormous potential for improving the corrosion resistance of LCSs. This cementitious coating material offers an effective way to reduce early oxidation in steel buildings, making it a useful tool in construction projects intended to ensure the prolonged lifespan of LCS components.
Rocznik
Strony
art. no. e79, 2024
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
  • Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602 105, India
autor
  • Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602 105, India
  • Department of Sustainable Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602 105, India
  • Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602 105, India
Bibliografia
  • 1. Paul SC, van Zijl GPAG. Chloride-induced corrosion modelling of cracked reinforced SHCC. Archiv Civ Mech Eng. 2016;16:734-42. https://doi.org/10.1016/j.acme.2016.04.016.
  • 2. Xavier JR. Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties of polyurethane matrix. Front Chem Sci Eng. 2023;17:1-14. https://doi.org/10.1007/s11705-022-2176-9.
  • 3. Tian Y, Dong C, Wang G, Cheng X, Li X. Zn-Al-NO2 layered double hydroxide as a controlled-release corrosion inhibitor for steel reinforcements. Mater Lett. 2019;236:517-20. https://doi.org/10.1016/j.matlet.2018.10.177.
  • 4. Suliga M, Wartacz R, Hawryluk M. Evolution of zinc coatings during drawing process of steel wires. Archiv Civ Mech Eng. 2023;23:120. https://doi.org/10.1007/s43452-023-00669-9.
  • 5. Hashemi SM, Parvin N, Valefi Z, Alishahi M. Comparative study on tribological and corrosion protection properties of plasma sprayed Cr2O3-YSZ-SiC ceramic coatings. Ceram Int. 2019;45:21108-19. https://doi.org/10.1016/j.ceramint.2019.07.087.
  • 6. Xavier JR, Vinodhini SP. Investigation of multifunctional nanocomposite coatings containing GO and NbC for the protection of steel structures in harsh environment. FlatChem. 2023;37: 100466. https://doi.org/10.1016/j.flatc.2022.100466.
  • 7. Khodakarami S, Zhao H, Rabbi KF, Miljkovic N. Scalable Corrosion-resistant coatings for thermal applications. ACS Appl Mater Interfaces. 2021;13:4519-34. https://doi.org/10.1021/acsami.0c19683.
  • 8. Islam MS, Sakairi M. Corrosion inhibition of mild steel by metal cations in high pH simulated fresh water at different temperatures. Corros Sci. 2019;153:100-8. https://doi.org/10.1016/j.corsci.2019.03.040.
  • 9. Ding Z, Li D-F, Wang Y-S, Hong S-X, Dong B-Q. Water distribution characteristics and research with capillary absorption for magnesium phosphate cement-coated cement pastes. Constr Build Mater. 2020;265: 120319. https://doi.org/10.1016/j.conbuildmat.2020.120319.
  • 10. Yu B, Zhou J, Cheng B, Yang W. Compressive strength development and microstructure of magnesium phosphate cement concrete. Constr Build Mater. 2021;283: 122585. https://doi.org/10.1016/j.conbuildmat.2021.122585.
  • 11. Dayyari MR, Amadeh A, Sadreddini S. Application of magnesium phosphate coating on low carbon steel via electrochemical cathodic method and investigation of its corrosion resistance. J Alloys Compd. 2015;647:956-8. https://doi.org/10.1016/j.jallcom.2015.06.063.
  • 12. Yin S, Yang H, Dong Y, Qu C, Liu J, Guo T, Duan K. Environmentally favourable magnesium phosphate anti-corrosive coating on carbon steel and protective mechanisms. Sci Rep. 2021;11:197. https://doi.org/10.1038/s41598-020-79613-3.
  • 13. Fouladi M, Amadeh A. Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating. Electrochim Acta. 2013;106:1-12. https://doi.org/10.1016/j.electacta.2013.05.041.
  • 14. Wang B, Lu K, Han C, Wu Q. Study on anti-corrosion performance of silica fume modified magnesium potassium phosphate cement-based coating on steel. Case Stud Constr Mater. 2022;17: e01467. https://doi.org/10.1016/j.cscm.2022.e01467.
  • 15. Jun L, Yongsheng J, Linglei Z, Benlin L. Resistance to sulfate attack of magnesium phosphate cement-coated concrete. Constr Build Mater. 2019;195:156-64. https://doi.org/10.1016/j.conbuildmat.2018.11.071.
  • 16. Tang H, Qian J, Ji Z, Dai X, Li Z. The protective effect of magnesium phosphate cement on steel corrosion. Constr Build Mater. 2020;255: 119422. https://doi.org/10.1016/j.conbuildmat.2020.119422.
  • 17. Yang Q, Zhu B, Wu X. Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete. Mater Struct. 2000;33:229-34. https://doi.org/10.1007/BF02479332.
  • 18. Al Jabri H, Devi MG, Al-Shukaili MA. Development of polyaniline - TiO2 nano composite films and its application in corrosion inhibition of oil pipelines. J Indian Chem Soc. 2023;100: 100826. https://doi.org/10.1016/j.jics.2022.100826.
  • 19. Sujitha VS, Ramesh B, Xavier JR. Effect of superabsorbent polymer hydrogels in the advancement of cementitious materials - a review. J Polym Environ. 2023;31:2761-78. https://doi.org/10.1007/s10924-023-02782-5.
  • 20. Kiran T, Andrushia D, Elhachem C, Kanagaraj B, Anand N, Azab M. Effect of nano cementitious composites on corrosion resistance and residual bond strength of concrete. Results Eng. 2023;18: 101064. https://doi.org/10.1016/j.rineng.2023.101064.
  • 21. Del Campo JM, Negro V. Nanomaterials in protection of buildings and infrastructure elements in highly aggressive marine environments. Energies. 2021;14:2588. https://doi.org/10.3390/en14092588.
  • 22. Sujitha VS, Ramesh B, Xavier JR. Effects of silane-functionalized nanocomposites in superabsorbent polymer and its reinforcing effects in cementitious materials. Polym Bull. 2023. https://doi.org/10.1007/s00289-023-04888-1.
  • 23. Li G, Hu W, Cui H, Zhou J. Long-term effectiveness of carbonation resistance of concrete treated with nano-SiO2 modified polymer coatings. Constr Build Mater. 2019;201:623-30. https://doi.org/10.1016/j.conbuildmat.2019.01.004.
  • 24. Karunarathne VK, Paul SC, Šavija B. Development of nano-SiO2 and bentonite-based mortars for corrosion protection of reinforcing steel. Materials. 2019;12:2622. https://doi.org/10.3390/ma12162622.
  • 25. Sujitha VS, Ramesh B, Xavier JR. Influence of nano alumina reinforced superabsorbent polymer on mechanical, durability, microstructural and rheological properties of cementitious materials. J Build Eng. 2023;79: 107780. https://doi.org/10.1016/j.jobe.2023.107780.
  • 26. Wang N, Fu W, Zhang J, Li X, Fang Q. Corrosion performance of waterborne epoxy coatings containing polyethylenimine treated mesoporous-TiO2 nanoparticles on mild steel. Prog Org Coat. 2015;89:114-22. https://doi.org/10.1016/j.porgcoat.2015.07.009.
  • 27. Karthick S, Park DJ, Lee YS, Saraswathy V, Lee HS, Jang HO, Choi HJ. Development of water-repellent cement mortar using silane enriched with nanomaterials. Prog Org Coat. 2018;125:48-60. https://doi.org/10.1016/j.porgcoat.2018.08.021.
  • 28. Liu Y, Bian D, Zhao Y, Wang Y. Influence of curing temperature on corrosion protection property of chemically bonded phosphate ceramic coatings with nano-titanium dioxide reinforcement. Ceram Int. 2019;45:1595-604. https://doi.org/10.1016/j.ceramint.2018.10.034.
  • 29. Guo M-Z, Ling T-C, Poon C-S. Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: influence of coating and weathering conditions. Cem Concr Compos. 2013;36:101-8. https://doi.org/10.1016/j.cemconcomp.2012.08.006.
  • 30. John S, Salam A, Baby AM, Joseph A. Corrosion inhibition of mild steel using chitosan/TiO2 nanocomposite coatings. Prog Org Coat. 2019;129:254-9. https://doi.org/10.1016/j.porgcoat.2019.01.025.
  • 31. Leyva-Porras C, Toxqui-Teran A, Vega-Becerra O, Miki-Yoshida M, Rojas-Villalobos M, Garcia-Guaderrama M, Aguilar-Martinez JA. Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol-gel method. J Alloys Compd. 2015. https://doi.org/10.1016/j.jallcom.2015.06.041.
  • 32. Dubey RS. Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater Lett. 2018;215:312-7. https://doi.org/10.1016/j.matlet.2017.12.120.
  • 33. Aware DV, Jadhav SS. Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol-gel method. Appl Nanosci. 2016;6:965-72. https://doi.org/10.1007/s13204-015-0513-8.
  • 34. Nithya N, Bhoopathi G, Magesh G, Kumar CD. Neodymium doped TiO2 nanoparticles by sol-gel method for antibacterial and photocatalytic activity. Mater Sci Semicond Process. 2018;83:70-82. https://doi.org/10.1016/j.mssp.2018.04.011.
  • 35. Li Y, Chen B. Factors that affect the properties of magnesium phosphate cement. Constr Build Mater. 2013;47:977-83. https://doi.org/10.1016/j.conbuildmat.2013.05.103.
  • 36. Xu B, Ma H, Li Z. Influence of magnesia-to-phosphate molar ratio on microstructures, mechanical properties and thermal conductivity of magnesium potassium phosphate cement paste with large water-to-solid ratio. Cem Concr Res. 2014;68:1-9. https://doi.org/10.1016/j.cemconres.2014.10.019.
  • 37. ASTM C807-05. Standard test method for time of setting of hydraulic cement mortar by modified Vicat needle. West Conshohocken: ASTM International; 2001.
  • 38. IS 5512 (1983). Specification for flow table for use in tests of hydraulic cements and pozzolanic materials [CED 2: cement and concrete].
  • 39. Qiao F, Chau CK, Li Z. Property evaluation of magnesium phosphate cement mortar as patch repair material. Constr Build Mater. 2009;24:695-700. https://doi.org/10.1016/j.conbuildmat.2009.10.039.
  • 40. Cruz-Moreno D, Fajardo G, Flores-Vivian I, Orozco-Cruz R, Ramos-Rivera C. Multifunctional surfaces of portland cement-based materials developed with functionalized silicon-based nanoparticles. Appl Surf Sci. 2020;531: 147355. https://doi.org/10.1016/j.apsusc.2020.147355.
  • 41. Gupta R, Tomar AS, Mishra D, Sanghi SK. Multifaceted geopolymer coating: material development, characterization and study of long term anti-corrosive properties. Microporous Mesoporous Mater. 2021;317: 110995. https://doi.org/10.1016/j.micromeso.2021.110995.
  • 42. Rooby DR, Kumar TN, Harilal M, Sofia S, George RP, Philip J. Enhanced corrosion protection of reinforcement steel with nanomaterial incorporated fly ash based cementitious coating. Constr Build Mater. 2021;275: 122130. https://doi.org/10.1016/J.CONBUILDMAT.2020.122130.
  • 43. Tomar AS, Gupta R, Bijanu A, Tanwar D, Singh A, Salammal ST, Dhand C, Mishra D. TiO2-geopolymer based novel corrosion protective micro-coatings to emaciate mild steel oxidation in severe environments. Constr Build Mater. 2023;395: 132252. https://doi.org/10.1016/j.conbuildmat.2023.132252.
  • 44. Janaki GB, Xavier JR. Evaluation of bi-functionalized alumina-epoxy nanocomposite coatings for improved barrier and mechanical properties. Surf Coat Technol. 2021;405: 126549. https://doi.org/10.1016/j.surfcoat.2020.126549.
  • 45. Niroumandrad S, Rostami M, Ramezanzadeh B. Effects of combined surface treatments of aluminium nanoparticle on its corrosion resistance before and after inclusion into an epoxy coating. Prog Org Coat. 2016;1(101):486-501. https://doi.org/10.1016/j.porgcoat.2016.09.010.
  • 46. Abd El-Lateef HM, Khalaf MM. Fabrication and characterization of alumina-silica/poly (o-toluidine) nanocomposites as novel anticorrosive epoxy coatings films on carbon steel. Microchem J. 2020;158: 105129. https://doi.org/10.1016/j.microc.2020.105129.
  • 47. Xavier JR. Evaluation of anticorrosion properties of epoxy-silane hybrid nanocomposite coating on AA6082 aluminum alloy. Surf Eng Appl Electrochem. 2020;56:762-72. https://doi.org/10.3103/S1068375520060150.
  • 48. Arianpouya N, Shishesaz M, Arianpouya M, Nematollahi M. Evaluation of synergistic effect of nanozinc/nanoclay additives on the corrosion performance of zinc-rich polyurethane nanocomposite coatings using electrochemical properties and salt spray testing. Surf Coat Technol. 2013;15(216):199-206. https://doi.org/10.1016/j.surfcoat.2012.11.036.
  • 49. Huang M, Yang J. Salt spray and EIS studies on HDI microcapsule-based self-healing anticorrosive coatings. Prog Org Coat. 2014;77(1):168-75. https://doi.org/10.1016/j.porgcoat.2013.09.002.
  • 50. Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B. Application of EIS and salt spray tests for investigation of the anticorrosion properties of polyurethane-based nanocomposites containing Cr2O3 nanoparticles modified with 3-amino propyl trimethoxy silane. Progr Org Coat. 2014;77(11):1935-45. https://doi.org/10.1016/j.porgcoat.2014.06.025.
  • 51. Jiang S, Chai F, Su H, Yang C. Influence of chromium on the flow-accelerated corrosion behavior of low alloy steels in 3.5% NaCl solution. Corros Sci. 2017;123:217-27. https://doi.org/10.1016/j.corsci.2017.04.024.
  • 52. Li Q, Jin X, Yan D, Fu C, Xu J. Study of wiring method on accelerated corrosion of steel bars in concrete. Constr Build Mater. 2021;269: 121286. https://doi.org/10.1016/j.conbuildmat.2020.121286.
  • 53. Fu JD, Wan S, Yang Y, Su Q, Han WW, Zhu YB. Accelerated corrosion behavior of weathering steel Q345qDNH for bridge in industrial atmosphere. Constr Build Mater. 2021;306: 124864. https://doi.org/10.1016/j.conbuildmat.2021.124864.
  • 54. Yin S, Yang H, Dong Y. Environmentally favourable magnesium phosphate anti-corrosive coating on carbon steel and protective mechanisms. Sci Rep. 2021;11:197. https://doi.org/10.1038/s41598-020-79613-3.
  • 55. Chandraraj SS, Xavier JR. Electrochemical and mechanical investigation into the effects of polyacrylamide/TiO2 in polyurethane coatings on mild steel structures in chloride media. J Mater Sci. 2022;57:13362-84. https://doi.org/10.1007/s10853-022-07483-3.
  • 56. Xavier JR. Effects of triazole functionalized SiO2/TiO2 nanoparticles in polyurethane coating: a study on structural, thermal, dynamic mechanical, morphological and electrochemical properties in marine environment. Chem Select. 2022;7: e202200345.
  • 57. Raj XJ, Nishimura T. Electrochemical investigation into the effect of nano-titania on the protective properties of epoxy coatings on mild steel in natural seawater. Int J Petrochem Sci Eng. 2017;2(1):29-37. https://doi.org/10.15406/ipcse.2017.02.00028.
  • 58. Vinodhini SP, Xavier JR. Novel synthesis of layered MoS2/TiO2/CNT nanocomposite as a potential electrode for high performance supercapacitor applications. Int J Energy Res. 2022;46(10):14088-104. https://doi.org/10.1002/er.8125.
  • 59. Xavier JR. Electrochemical and dynamic mechanical properties of polyurethane nanocomposite reinforced with functionalized TiO2-ZrO2 nanoparticles in automobile industry. Appl Nanosci. 2022;12:1763-78. https://doi.org/10.1007/s13204-022-02393-x.
  • 60. Finke A, Escobar J, Munoz J, Petit M. Prediction of salt spray test results of micro arc oxidation coatings on AA2024 alloys by combination of accelerated electrochemical test and artificial neural network. Surf Coat Technol. 2021;421: 127370. https://doi.org/10.1016/j.surfcoat.2021.127370.
  • 61. Balzer M, Fenker M, Kappl H, Muller T, Heyn A, Heiss A, Richter A. Corrosion protection of steel substrates by magnetron sputtered TiMgN hard coatings: structure, mechanical properties and growth defect related salt spray test results. Surf Coat Technol. 2018. https://doi.org/10.1016/j.surfcoat.2018.05.037.
  • 62. Xavier JR, Srinivasan S. Multilayer epoxy/GO/silane/Nb2C nanocomposite: a promising coating material for the aerospace applications. J Adhes Sci Technol. 2023. https://doi.org/10.1080/01694243.2023.2221387.
  • 63. Esfahani SL, Ranjbar Z, Rastegar S. Comparison of corrosion protection of normal and galvanised steel coated by cathodic electrocoatings using EIS and salt spray tests. Corros Eng Sci Technol. 2016;51:82-9. https://doi.org/10.1179/1743278215Y.0000000032.
  • 64. Xavier JR, Vinodhini SP, Ramesh B, RajaBeryl J. Flame retardant and anticorrosion behavior of multifunctional epoxy nanocomposite coatings containing graphitic carbon nitride/silanized HfO2 nanofillers for the protection of steel surface in automobile industry. ACS Chem Health Saf. 2023;30(6):428-50.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5627315d-0ae2-476c-8d67-0c5aec502d33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.