PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reflection and transmission at the boundary surface of modified couple stress thermoelastic media

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the reflection and transmission at a plane interface in modified couple stress generalized thermoelastic solid half spaces in the context of Loard-Shulman (LS) and Green-Lindsay (GL) theories in welded contact are investigated. Amplitude ratios of various reflected and transmitted waves are obtained due to incidence of a set of coupled longitudinal waves and coupled transverse waves. It is found that the amplitude ratios of various reflected and transmitted waves are functions of the angle of incidence, frequency and are affected by the couple stress properties of the media. Some special cases are deduced from the present formulation.
Rocznik
Strony
61--81
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
  • Department of Mathematics, Kurukshetra University Kurukshetra, Haryana, INDIA-136119
autor
  • N.C. College of Engineering Israna, Panipat, Haryana, INDIA-132107
Bibliografia
  • [1] Cosserat E. and Cosserat F. (1909): Theorie des Corps Deformables. – Paris: Hermann et Fils.
  • [2] Toupin R.A. (1962): Elastic materials with couple-stresses. – Arch. Ration Mech. Analysis, vol.11, No.1, pp.385–414.
  • [3] Mindlin R.D. and Tiersten H.F. (1962): Effects of couple-stresses in linear elasticity. – Arch. Ration Mech. Analysis, vol.11, pp.415–448.
  • [4] Fleck N.A. and Hutchinson J.W. (1997): Strain gradient plasticity. – Advances in Applied Mechanics, vol.33, pp.295-361, Academic Press.
  • [5] Yang F., Chong A.C.M., Lam D.C.C. and Tong P. (2002): Couple stress based strain gradient theory for elasticity. – International Journal of Solids and Structures, vol.39, No.10, pp.2731-2743.
  • [6] Ma H., Gao X. and Reddy J. (2008): A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. – Journal of the Mechanics and Physics of Solids, vol.56, No.12, pp.3379-3391. doi:10.1016/j.jmps.2008.09.007
  • [7] Park S.K. and Gao X.-L. (2008): Micromechanical modeling of honeycomb structures based on a modified couple stress theory. – Mechanics of Advanced Materials and Structures, vol.15, No.8, pp.574–593.
  • [8] Yin L., Qian Q., Wang L. and Xia W. (2010): Vibration analysis of microscale plates based on modified couple stress theory. – Acta Mechanica Solida Sinica, vol.23, No.5, pp.386–393.
  • [9] Şimşek M. (2010): Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory. – International Journal of Engineering Science, vol.48, No.12, pp.1721–1732.
  • [10] Jomehzadeh E., Noori H.R. and Saidi A.R. (2011): The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. – Physica E: Low-Dimensional Systems and Nanostructures, vol.43, No.4, pp.877–883.
  • [11] Ma H.M., Gao X.-L. and Reddy J. N. (2011): A non-classical Mindlin plate model based on a modified couple stress theory. – Acta Mechanica, vol.220, No.1-4, pp.217–235.
  • [12] Akgöz B. and Civalek Ö. (2012): Free vibration analysis for single-layered graphene sheets in an elastic matrix via modified couple stress theory. – Materials and Design, vol.42, pp.164–171.
  • [13] Nateghi A., Salamat-Talab M., Rezapour J. and Daneshian B. (2012): Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory. – Applied Mathematical Modelling, vol.36, No.10, pp.4971–4987.
  • [14] Chen W. and Li X. (2013): A new modified couple stress theory for anisotropic elasticity and microscale laminated Kirchhoff plate model. – Archive of Applied Mechanics, vol.84, No.3, 323–341. doi:10.1007/s00419-013-0802-1.
  • [15] Gao X.-L., Huang J.X. and Reddy J.N. (2013): A non-classical third-order shear deformation plate model based on a modified couple stress theory. – Acta Mechanica, vol.224, No.11, pp.2699–2718.
  • [16] Ansari R., Faghih Shojaei M., Mohammadi V., Gholami R. and Darabi M.A. (2014): Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory. – Composite Structures, vol.114, pp.124–134.
  • [17] Kahrobaiyan M.H., Asghari M. and Ahmadian M.T. (2014): A Timoshenko beam element based on the modified couple stress theory. – International Journal of Mechanical Sciences, vol.79, pp.75–83. doi:10.1016/j.ijmecsci.2013.11.014
  • [18] Mohammad Abadi M. and Daneshmehr A.R. (2014): An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler–Bernoulli and Timoshenko beams. – International Journal of Engineering Science, vol.75, 40–53.
  • [19] Mohammad Abadi M. and Daneshmehr A.R. (2014): Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions. – International Journal of Engineering Science, vol.74, pp.1–14.
  • [20] Morini L., Piccolroaz A. and Mishuris G. (2014): Remarks on the energy release rate for an antiplane moving crack in couple stress elasticity. – International Journal of Solids and Structures, vol.51, No.18, pp.3087–3100.
  • [21] Şimsek M. (2014): Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method. – Composite Structures, vol.112, pp.264-272.
  • [22] Ashoori A. and Mahmoodi M. (2015): The modified version of strain gradient and couple stress theories in general curvilinear coordinates. – European Journal of Mechanics-A/Solids, vol.49, pp.441–454.
  • [23] Askari A.R. and Tahani M. (2015): Size-dependent dynamic pull-in analysis of beam-type MEMS under mechanical shock based on the modified couple stress theory. – Applied Mathematical Modelling, vol.39, No.2, pp.934–946.
  • [24] Dehrouyeh-Semnani A.M. and Nikkhah-Bahrami M. (2015): A discussion on incorporating the Poisson effect in microbeam models based on modified couple stress theory. – International Journal of Engineering Science, vol.86, pp.20–25.
  • [25] Farokhi H. and Ghayesh M.H. (2015): Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. – International Journal of Mechanical Sciences, vol.90, pp.133–144.
  • [26] Tadi Beni Y., Mehralian F. and Razavi H. (2015): Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. – Composite Structures, vol.120, pp.65–78.
  • [27] Biot M. (1956): Thermoelasticity and irreversible thermodynamics. – Journal of Applied Physics, vol.27, pp.240-253.
  • [28] Lord H. and Shulman Y. (1967): A generalized dynamical theory of elasticity. – Journal of Mechanical Physics, vol.15, pp.299-309.
  • [29] Green A.E. and Lindsay K.A. (1972): Thermoelasticity. – Journal of Elasticity, vol.2, pp.1-7.
  • [30] Ram P. and Sharma N. (2008): Reflection and transmission of micropolar thermoelastic waves with an imperfect bonding. – International Journal of Applied Math and Mechanics, vol.4, No.3, pp.1-23.
  • [31] Xue B.B., Xu H.Y., Fu Z.M. and Sun Q.Y. (2010): Reflection and refraction of longitudinal displacement wave at interface between two micropolar elastic solid. – Advanced Materials Research, vol.139 – 141, pp.214-217.
  • [32] Kumar R., Kaur M. and Rajvanshi S.C. (2014): Reflection and transmission between two micropolar thermoelastic half-spaces with three-phase-lag model. – Journal of Engineering Physics and Thermophysics, vol.87, No.2, pp.295-307.
  • [33] Kumar R., Kumar K. and Nautiyal R.C. (2015): Reflection at the free surface of couple stress generalized thermoelstic solid half-space. – Open Journal of Heat, Mass and Momentum Transfer, Accepted.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56199ed0-da8a-45e9-94ab-985c47a825b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.