PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Review and comparison of methods for limiting leakage currents in single-phase transformerless PV inverter topologies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transformerless inverters are widely used in different photovoltaic nonisolated ac module applications, mainly in grid-tied photovoltaic (PV) generation systems, due to the benefits of achieving high efficiency over a wide load range, and low cost. Various transformerless inverter topologies have been proposed to meet the safety requirement of low ground leakage currents, such as specified in the VDE-4105 standard and low-output ac-current distortion. Topology modifications of transformerless full bridge inverters are designed to balance and maintain a constant common mode output voltage, thereby eliminating or reducing leakage currents. This article reviews and compares the different methods for limiting leakage currents in known topologies of the full-bridge transformerless inverters, such as: H4, H5, H6, HERIC, and their improvements. The main topologies and strategies used to reduce the leakage current in transformerless schemes are summarized, highlighting advantages and disadvantages and establishing points of comparison with similar topologies. To compare the properties of different medium to high power inverters, PV inverter topologies were implemented using IGBTs and tested with the same components, same simulation parameters in PSPICE to evaluate their performance in terms of energy efficiency and leakage current characteristics. The detailed power stage operating principles, extended PWM modulator, and integrated universal gate driver with galvanic isolation in the transmission path of control signal for all IGBTs of the inverter, as well isolated and floating bias power supply for gate drivers are described.
Rocznik
Strony
1--19
Opis fizyczny
Bibliogr. 23 poz., wykr.
Twórcy
  • University of Applied Sciences in Tarnow, Polytechnic Faculty, ul. Mickiewicza 8, 33-100 Tarnów, Poland
  • University of Applied Sciences in Tarnow, Polytechnic Faculty, ul. Mickiewicza 8, 33-100 Tarnów, Poland
  • University of Applied Sciences in Tarnow, Polytechnic Faculty, ul. Mickiewicza 8, 33-100 Tarnów, Poland
  • University of Applied Sciences in Tarnow, Polytechnic Faculty, ul. Mickiewicza 8, 33-100 Tarnów, Poland
  • AGH University of Science and Technology, Faculty of Computer Science, Electronics, and Telecommunications, ul. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] Kjaer SB, Pedersen JK, Blaabjerg F. A review of single- phasegrid-connected inverters for photovoltaic modules. IEEE Transactions Industry Applications. 2005;41(5): 1292–1306. https://doi.org/10.1109/TIA.2005.853371.
  • [2] Gubía E, Sanchis P, Ursúa A, López J, Marroyo L. Ground currents in single-phase transformerless photovoltaic systems. Progress in Photovoltaics: Research and Applications. 2007;15(7): 629–650. https://doi.org/10.1002/ pip.761.
  • [3] Raj CM, Lade H. An overview of 1-phase transformerless HERIC inverter topology for standalone system. International Journal of Advance Engineering and Research Development. 2016;3(12):83–91.
  • [4] Li W, Gu Y, Luo H, Cui W, He X, Xia C. Topology review and derivation methodology of single-phase transformerless photovoltaic inverters for leakage current suppression. IEEE Transactions on Industrial Electronics. 2015;62(7):4537- 4551. https://doi.org/10.1109/TIE.2015.2399278.
  • [5] Zhang L, Sun K, Xing Y, Xing M. H6 transformerless fullbridge pv grid-tied inverters. IEEE Transactions on Power Electronics. 2014;29(3):1229-1238. https://doi.org/10.1109/TPEL.2013.2260178.
  • [6] Kerekes T, Teodorescu R, Rodríguez P, Vázquez G, Aldabas E. A new high-efficiency single-phase transformerless PV inverter topology. IEEE Transactions on Industrial Electronics. 2011;58(1):184-191. https://doi.org/10.1109/TPEL. 2009.2024092.
  • [7] Cui W, Yang B, Zhao Y, Li W, He X. A novel single-phase transformerless grid-connected inverter. In: Proceedings: IECON 2011 – 37th Annual Conference of the IEEE Industrial Electronics Society. Piscataway, NJ: IEEE; 2011. p. 1126–1130. https://doi.org/10.1109/IECON10871.2011
  • [8] Yu W, Lai J-SJ, Qian H, Hutchens C. High-efficiency MOSFET inverter with H6-type configuration for photovoltaic nonisolated AC-module applications. IEEE Transactions on Power Electronics. 2011;26(4):1253–1260. https://doi.org/10.1109/TPEL.2010.2071402.
  • [9] González R, López J, Sanchis P, Marroyo L. Transformerless inverter for single-phase photovoltaic systems”, IEEE Transactions on Power Electronics. 2007;22(2):693–697. https://doi.org/10.1109/TPEL.2007.892120
  • [10] Araújo SV, Zacharias P, Mallwitz R. Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems. IEEE Transactions on Industrial Electronics. 2010;57(9):3118–3128. https://doi.org/10.1109/TIE.2009.2037654.
  • [11] Farswan RS, Fernandes BG. A low cost high reliable hybrid switch single phase grid-tied inverter. In: Proceedings: IECON 2014 – 40th Annual Conference of the IEEE Industrial Electronics Society. Piscataway, NJ: IEEE; 2014. p. 1048–1052. https://doi.org/10.1109/IECON.2014.7048631.
  • [12] Raj CM, Lade H. Different type of inverter topologies for PV transformerless standalone system. Journal of Emerging Technologies and Innovative Research. 2016;3(12):1–9. Available from: http://www.jetir.org/papers/JETIR1612001.pdf.
  • [13] John J. Implementation of a novel transformerless inverter topology for PV application. International Journal of Latest Trends in Engineering and Technology. 2017;8(2):301–306. http://dx.doi.org/10.21172/1.82.040.
  • [14] IEC 60755 Standard.
  • [15] Electromagnetic Compatibility (EMC) – Part 3.2: Limits – Limits for Harmonic Current Emissions (Equipment Input Current Under 16 A Per Phase), EN 61000-3-2, 2006.
  • [16] Lopez O, Teodorescu R, Freijedo F, Doval-Gandoy J. Leakage current evaluation of a single-phase transformerless PV inverter connected to the grid. In: APEC 07 – Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition. Piscataway, NJ: IEEE; 2007. p. 907–912. https://doi.org/10.1109/APEX.2007.357623.
  • [17] Sundar DJ, Kumaran MS. Common mode behavior in grid connected DC and AC decoupled PV inverter topologies. Archives of Electrical Engineering. 2016;65(3):481–493. https://doi.org/10.1515/aee-2016-0035.
  • [18] Sree KT, Rajesh B. Analysis of single-phase transformerless inverter for hybrid renewable energy sources. Journal of Critical Reviews. 2020;7(4):3975–3987.
  • [19] López O, Freijedo FD, Yepes A, Fernández-Comesaña P, Malvar J, Teodorescu R, Doval-Gandoy J. Eliminating ground current in a transformerless photovoltaic application. IEEE Transactions on Energy Conversion. 2010;25(1):140–147. https://doi.org/10.1109/TEC.2009.2037810.
  • [20] Gonzalez R, Gubia E, Lopez J, Marroyo L. Transformerless singlephase multilevel-based photovoltaic inverter. IEEE Transactions on Industrial Electronics. 2008;55(7): 2694–2702. https://doi.org/10.1109/TIE.2008.924015.
  • [21] Nielsen K. Audio Power Amplifier Techniques with Energy Efficient Power Conversion. [doctoral dissertation]. Kongens Lyngby: Technical University of Denmark; 1998.
  • [22] Kołodziejski W, Kuta SW, Jasielski J. Open-loop class-BD audio amplifiers with balanced common mode output. Electronics. 2021;10(12):1381. https://doi.org/10.3390/electronics10121381.
  • [23] Xiao H, Xie S, Chen Y, Huang R. An optimized transformerless photovoltaic grid-connected inverter. IEEE Transactions on Industrial Electronics. 2011;58(5):1887– 1893. https://doi.org/10.1109/TIE.2010.2054056.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-561611c7-d98a-4a6e-b7bc-d70470c6970f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.