Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Contemporary materials engineering requires the use of materials characterised by high mechanical properties, as these precisely properties determine the choice of material for parts of machinery and equipment. Owing to these properties it is possible to reduce the weight and, consequently, the consumption of both material and energy. Trying to meet these expectations, the designers are increasingly looking for solutions in the application of magnesium alloys as materials offering a very beneficial strength-to-weight ratio. However, besides alloying elements, the properties are to a great extent shaped by the solidification conditions and related structure. The process of structure formation depends on the choice of casting method forced by the specific properties of casting or by the specific intended use of final product. The article presents a comparison of AZ91 magnesium alloys processed by different casting technologies. A short characteristic was offered for materials processed by the traditional semi-continuous casting process, which uses the solidification rates comprised in a range of 5 - 20⁰C/s, and for materials made in the process of Rapid Solidification, where the solidification rate can reach 106⁰C/s. As a result of the casting process, a feedstock in the form of billets and thin strips was obtained and was subjected next to the process of plastic forming. The article presents the results of structural analysis of the final product. The mechanical properties of the ø7 mm extruded rods were also evaluated and compared.
Czasopismo
Rocznik
Tom
Strony
43--48
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Non Ferrous Metals, Light Metals Division, 19 Pilsudskiego Street, 32-050 Skawina, Poland
autor
- Institute of Non Ferrous Metals, Light Metals Division, 19 Pilsudskiego Street, 32-050 Skawina, Poland
autor
- Institute of Non Ferrous Metals, Light Metals Division, 19 Pilsudskiego Street, 32-050 Skawina, Poland
autor
- Institute of Non Ferrous Metals, Light Metals Division, 19 Pilsudskiego Street, 32-050 Skawina, Poland
autor
- Institute of Non Ferrous Metals, Light Metals Division, 19 Pilsudskiego Street, 32-050 Skawina, Poland
Bibliografia
- [1] Kasprzak, W. Sokołowski, J.H. Sahoo, M.& Dobrzański, L.A. (2008). Thermal and structural characteristics of the AM50 magnesium alloy. Journal of Achievements in Materials and Manufacturing Engineering. 8(2).
- [2] Kulekci, M. K. (2008). Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology. 39, 851-865.
- [3] Braszczyńska-Malik, K. N. & Żydek, A. (2008). Microstructure of Mg-Al alloy with rare earth addition. Archives of Foundry Engineering. 10, 23-26.
- [4] Żydek, A., Kamieniak, J. & Braszczyńska-Malik, K. N. (2010). The effect of rare earth elements on themicrostructure of as-cast AM50 alloy. Archives of Foundry Engineering. 10, 147-150.
- [5] Żydek, A., Kamieniak, J. & Braszczyńska-Malik, K. N. (2011). Evolution of Mg-5Al-0.4Mn alloy microstructure after rare earth elements addition. Archives of Foundry Engineering. 11(2), 109-112.
- [6] Braszczyńska-Malik, K. N. (2014). Some Mechanical Properties of Experimental Mg-Al -RE-Mn Magnesium Alloys. Archives of Foundry Engineering. 14(1), 13-16.
- [7] Changjiang, S. Qingyou, H. &Qijie, Z. (2009). Review of grain refinement methods for as-cast microstructure of magnesium alloy. China Foundry. 6(2), 93-103.
- [8] Dahle, A.K. Lee, Y.C. Nave, M.D. Schaffer P.L. & StJohn, D.H. (2001). Development of the as-cast microstructure in magnesium –aluminium alloys. Journal of Light Metals. 1, 61-72.
- [9] Cao, P. Qian, M. & StJohn, D.H. (2004). Effect of iron on grain refinement of high – purity Mg-Al alloys. Scripta Materialia. 51, 125-129.
- [10] Gao, L. Liang, S. Chen, R. & Han, E. (2008). Correlation of recalescence with grain refinement of magnesium alloys. Trans. Nonferrous Met. Soc. China. 18, 288-291.
- [11] Vinotha, D. Ragukandan, K. Pillai, U.T.S. & Pai, B.C. (2009). Grain refining mechanisms in magnesium alloys – an overview Transaction of The Indian Institute of Metals. 62(6), 521-532.
- [12] Fu, H.M. Qiu, D. Zhang, M.X. & Wang, H. (2008). The development of a new grain refiner for magnesium alloys using the edge-to-edge model. Journal of Alloys and Compounds. 456, 390-394.
- [13] Qian, M. & Cao, P. (2005). Discussions on grain refinement of magnesium alloys by carbon inoculation. Scripta Materalia. 52, 415-419.
- [14] Kim, Y.M. Yim, C.D. & You, B.S. (2007). Grain refining mechanism in Mg-Al base alloys with carbon addition. Scripta Materalia. 57, 691-694.
- [15] Zhao, H. & Guan, S. (2005). Microstructure and properties of AZ31 magnesium alloy with rapid solidification. Trans Nonferrous Met. Soc. China. 15(1), 144-148. ID 1003-632692005)01-0144-05.
- [16] Kapinos, D. Szymanek, M. Augustyn, B. & Gawlik M. (2013). Effect of heat treatment on the mechanical properties of wrought Al-Zn-Mg-Cu alloy cast by Rapid Solidification. Materials Science Forum. 765, 496-500.
- [17] Szymański, W., Szymanek, M., Żelechowski, J., Bigaj, M., Gawlik, M. & Płonka, B. (2013). Alloy AlSi30 Cast in the Process of Rapid Solidification and Consolidated in the Process of Plastic Forming. Light Metals. 2013, 333-337.
- [18] Kumar, S. (2006). Some Studies on Hot Extrusion of Rapidly Solidified Mg Alloys. Journal of Materials Engineering and Performance. 15(1), 41-46. DOI:10.1361/105994906X83493.
- [19] Augustyn, B., Szymanek, M., Kapinos, D. & Pakieła, W. (2014). Evaluation of Functional Properties of the Rapidly Solidified Cast AlSi30 Alloy as a Material for Transport Applications. Light Metals. 2014, 975-980.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5611e467-1390-4794-b63d-de2b8585e133