PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

K-Means and Fuzzy based Hybrid Clustering Algorithm for WSN

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wireless Sensor Networks (WSN) acquired a lot of attention due to their widespread use in monitoring hostile environments, critical surveillance and security applications. In these applications, usage of wireless terminals also has grown significantly. Grouping of Sensor Nodes (SN) is called clustering and these sensor nodes are burdened by the exchange of messages caused due to successive and recurring re-clustering, which results in power loss. Since most of the SNs are fitted with nonrechargeable batteries, currently researchers have been concentrating their efforts on enhancing the longevity of these nodes. For battery constrained WSN concerns, the clustering mechanism has emerged as a desirable subject since it is predominantly good at conserving the resources especially energy for network activities. This proposed work addresses the problem of load balancing and Cluster Head (CH) selection in cluster with minimum energy expenditure. So here, we propose hybrid method in which cluster formation is done using unsupervised machine learning based kmeans algorithm and Fuzzy-logic approach for CH selection.
Rocznik
Strony
793--801
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Faculty of Electronics and Communication Engineering Department,Basaveshwar Engineering College, Bagalkote, Karnataka, INDIA
  • Faculty of Electronics and Communication Engineering Department,Basaveshwar Engineering College, Bagalkote, Karnataka, INDIA
Bibliografia
  • [1] Merabtine Nassima, Djamel Djenouri and Djamel-Eddine Zegour, ”Towards energy efficient clustering in wireless sensor networks: A comprehensive review”, IEEE Access, vol. 9, pp. 92688-92705, 2021. https://doi.org/10.1109/ACCESS.2021.3092509
  • [2] Verma, Sandeep, Neetu Sood, and Ajay Kumar Sharma, ”Genetic algorithm-based optimized cluster head selection for single and multiple data sinks in heterogeneous wireless sensor network”, Applied Soft Computing, vol. 85, 2019. https://doi.org/10.1016/j.asoc.2019.105788
  • [3] Primeau, Nicolas, Rafael Falcon, Rami Abielmona, and Emil M. Petriu, ”A review of computational intelligence techniques in wireless sensor and actuator networks”, IEEE Communications Surveys and Tutorials, vol. 20, no. 4, pp. 2822-2854, 2018. https://doi.org/10.1109/COMST.2018.2850220
  • [4] Amutha, J., Sandeep Sharma and Sanjay Kumar Sharma, ”Strategies based on various aspects of clustering in wireless sensor networks using classical, optimization and machine learning techniques: Review, taxonomy, research findings, challenges and future directions”, Computer Science Review, vol. 40, 2021. https://doi.org/10.1016/j.cosrev.2021.100376
  • [5] Raj, Jennifer S., ”Machine learning based resourceful clustering with load optimization for wireless sensor networks”, Journal of Ubiquitous Computing and Communication Technologies (UCCT), vol. 2, no. 01, pp. 29-38, 2020. https://doi.org/10.36548/jucct.2020.1.004
  • [6] Panchal, Akhilesh, and Rajat Kumar Singh, ”EHCR-FCM: Energy efficient hierarchical clustering and routing using fuzzy C-means for wireless sensor networks”, Telecommunication Systems, vol. 76, no. 2, pp. 251-263, 2021. https://doi.org/10.1007/s11235-020-00712-7
  • [7] Shahidinejad Ali and Saeid Barshandeh, ”Sink selection and clustering using fuzzy-based controller for wireless sensor networks”, International Journal of Communication Systems, vol. 33, no. 15, 2020. https://doi.org/10.1002/dac.4557
  • [8] Sinaga Kristina P., and Miin-Shen Yang, ”Unsupervised K-means clustering algorithm”, IEEE access, vol. 8, pp. 80716-80727, 2020. https://doi.org/10.1109/ACCESS.2020.2988796
  • [9] Mouton Jacques P., Melvin Ferreiraand Albertus SJ Helberg, ”A comparison of clustering algorithms for automatic modulation classification”, Expert Systems with Applications, vol. 151, 2020. https://doi.org/10.1016/j.eswa.2020.113317
  • [10] Hassan Ali Abdul-hussian, Wahidah Md Shah, Mohd Fairuz Iskandar Othman and Hayder Abdul Hussien Hassan, ”Evaluate the performance of K-Means and the fuzzy C-Means algorithms to formation balanced clusters in wireless sensor networks”, International Journal of Electrical and Computer Engineering, vol. 10, no. 2, 2020. (2088-8708) 10, no. 2 (2020). http://doi.org/10.11591/ijece.v10i2.pp1515-1523
  • [11] Angadi Basavaraj M., Mahabaleshwar S. Kakkasageri, and Sunilkumar S. Manvi, ”Computational intelligence techniques for localization and clustering in wireless sensor networks”, In Recent Trends in Computational Intelligence Enabled Research, Academic Press, pp. 23-40, 2021. https://doi.org/10.1016/B978-0-12-822844-9.00011-6
  • [12] Ahmed Mohiuddin, Raihan Seraj and Syed Mohammed Shamsul Islam, ”The k-means algorithm: A comprehensive survey and performance evaluation”, Electronics, vol. 9, no. 8, 2020. https://doi.org/10.3390/electronics9081295
  • [13] Rezaee, Mustafa Jahangoshai, Milad Eshkevari, Morteza Saberi and Omar Hussain, ”GBK-means clustering algorithm: An improvement to the K-means algorithm based on the bargaining game”, Knowledge-Based Systems, Vol. 213, 2021. https://doi.org/10.1016/j.knosys.2020.106672
  • [14] Bai Liang, Jiye Liang and Fuyuan Cao, ”A multiple k-means clustering ensemble algorithm to find nonlinearly separable clusters”, Information Fusion, vol. 61, pp. 36-47, 2020. https://doi.org/10.1016/j.inffus.2020.03.009
  • [15] Jlassi Wadii, Rim Haddad, Ridha Bouallegue and Raed Shubair, ”A combination of K-means Algorithm and Optimal Path Selection Method for Lifetime Extension in Wireless Sensor Networks”, International Conference on Advanced Information Networking and Applications, Springer, pp. 416-425, 2021. https://doi.org/10.1007/978-3-030-75078-742
  • [16] Ghazal, T.M., Hussain, M.Z., Said, R.A., Nadeem, A., Hasan, M.K., Ahmad, M., Khan, M.A. and Naseem, M.T., ”Performances of K-means clustering algorithm with different distance metrics”, Intelligent Automation and Soft Computing, vol. 30, no.2, pp. 735-742, 2021. https://doi.org/10.32604/iasc.2021.019067
  • [17] Rajaram V. and N. Kumaratharan, ”Multi-hop optimized routing algorithm and load balanced fuzzy clustering in wireless sensor networks”, Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 3, pp. 4281-4289, 2021. https://doi.org/10.1007/s12652-022-04273-2
  • [18] Lata Sonam, Shabana Mehfuz, Shabana Urooj and Fadwa Alrowais, ”Fuzzy clustering algorithm for enhancing reliability and network lifetime of wireless sensor networks”, IEEE Access, vol. 8, pp. 66013-66024, 2020. https://doi.org/10.1109/ACCESS.2020.2985495
  • [19] Hamzah Abdulmughni, Mohammad Shurman, Omar Al-Jarrah and Eyad Taqieddin, ”Energy-efficient fuzzy-logic-based clustering technique for hierarchical routing protocols in wireless sensor networks”, Sensors, vol. 19, no. 3, 2019. https://doi.org/10.3390/s19030561
  • [20] Rajput Anagha and Vinoth Babu Kumaravelu, ”Fuzzy-based clustering scheme with sink selection algorithm for monitoring applications of wireless sensor networks”, Arabian Journal for Science and Engineering, vol. 45, no. 8, pp. 6601-6623, 2020. https://doi.org/10.1007/s13369-020-04564-w
  • [21] Chauhan Vinith and Surender Soni, ”Energy aware unequal clustering algorithm with multi-hop routing via low degree relay nodes for wireless sensor networks”, Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 2, pp. 2469-2482, 2021.https://doi.org/10.1007/s12652-020-02385-1
  • [22] Mehra Pawan Singh, ”E-FUCA: enhancement in fuzzy unequal clustering and routing for sustainable wireless sensor network”, Complex and Intelligent Systems, vol. 8, no. 1, pp. 393-412, 2022. https://doi.org/10.1007/s40747-021-00392-z
  • [23] Dwivedi Anshu Kumar and Awadhesh Kumar Sharma, ”EE-LEACH: Energy Enhancement in LEACH using Fuzzy Logic for Homogeneous WSN”, Wireless Personal Communications, vol. 120, no. 4 pp. 3035-3055, 2021. https://doi.org/10.1007/s11277-021-08598-7
  • [24] Vasudha and Anoop Kumar, ”Probabilistic Based Optimized Adaptive Clustering Scheme for Energy-Efficiency in Sensor Networks”, International Journal of Computer Networks and Applications, vol. 8, no. 3, 2021. https://doi.org/10.22247/ijcna/2021/209187
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5611d0b0-4a1c-4856-aedc-f1f578e30212
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.