PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulations of the AP1000-based reactor core with SERPENT computer code

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the core design, model development and results of the neutron transport simulations of the large Pressurized Water Reactor based on the AP1000 design.The SERPENT 2.1.29 Monte Carlo reactor physics computer code with ENDF/BVII and JEFF3.1.1 nuclear data libraries was applied. The full-core 3D models were developed according to the available Design Control Documentation and the literature. Criticality simulations were performed for the core at the Beginning of Life state for Cold Shutdown, Hot Zero Power and Full Power conditions. Selected core parameters were investigated and compared with the design data: effective multiplication factors, boron concentrations, control rod worth, reactivity coefficients and radial power distributions. Acceptable agreement between design data and simulations was obtained, confirming the validity of the model and applied methodology.
Rocznik
Strony
295--325
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
Bibliografia
  • [1] World Nuclear Association. World Nuclear Power Reactors & Uranium Requirements. Access: 15-10-2017. http://world-nuclear.org/information-library/facts-and-figures/world-nuclearpower-reactors-and-uranium-requireme.aspx.
  • [2] World Nuclear Association. Nuclear Power in the World Today. Access: 15-10-2017. http://www.world-nuclear.org/information-library/current-and-future-generation/nuclearpower-in-the-world-today.aspx.
  • [3] International Energy Agency. International Energy Outlook 2016 (IEO2016). Access: 15-102017. https://www.eia.gov/outlooks/ieo/pdf/electricity.pdf.
  • [4] Polish Information and Foreign Investment Agency. Polish Power Sector. Access: 17.03.2017. http://www.paiz.gov.pl/files/?id_plik=19609 (in Polish).
  • [5] United States Nuclear Regulatory Commission. Westinghouse AP1000 Design Control Document Rev. 19,2011. http://pbadupws.nrc.gov/docs/ML1117/ML11171A500.html.
  • [6] United States Nuclear Regulatory Commission. Westinghouse AP1000 Design Control Document Rev. 19 – Tier 2 Chapter 4 – Section 4.1 Summary Description, 2011. https://www.nrc.gov/docs/ML1117/ML11171A443.pdf.
  • [7] United States Nuclear Regulatory Commission, Westinghouse AP1000 Design Control Document Rev. 19 – Tier 2 Chapter 4 – Section 4.2 Fuel System Design, 2011. https://www.nrc.gov/docs/ML1117/ML11171A444.pdf.
  • [8] United States Nuclear Regulatory Commission, Westinghouse AP1000 Design Control Document Rev. 19 – Tier 2 Chapter 4 – Section 4.3 Nuclear Design, 2011. https://www.nrc.gov/docs/ML1117/ML11171A445.pdf.
  • [9] United States Nuclear Regulatory Commission. Westinghouse AP1000 Design Control Document Rev. 19 – Tier 2 Chapter 4 – Section 4.4 Thermal and Hydraulic Design, 2011. https://www.nrc.gov/docs/ML1117/ML11171A446.pdf.
  • [10] United States Nuclear Regulatory Commission, Westinghouse AP1000 Design Control Document Rev. 19 – Tier 2 Chapter 4 – Section 4.5 Reactor Materials, 2011. https://www. nrc.gov/docs/ML1117/ML11171A447.pdf.
  • [11] Westinghouse, AP1000 nuclear power plant overview, February 2016. http://www.westinghousenuclear.com/New-Plants/AP1000-PWR/Overview.
  • [12] J. Leppänen. Development of a New Monte Carlo Reactor Physics Code. D.Sc. Dissertation, Helsinki University of Technology, Espoo, Finland, 2007.
  • [13] J. Leppänen. Serpent–a Continuous-energy Monte Carlo Reactor Physics Burn up Calculation Code. Code Manual, VTT Technical Research Centre of Finland, 18 June, 2015.
  • [14] J. Leppänen, M. Pusa, T. Viitanen, V. Valtavirta, and T. Kaltiaisenaho. The Serpent Monte Carlo code: Status, development and applications in 2013. Annals of Nuclear Energy, 82:142–150, 2015. doi: 10.1016/j.anucene.2014.08.024.
  • [15] MIT Computational Reactor Physics Group. BEAVRS – Benchmark for Evaluation Reactor Validation of And Simulations Rev. 2.0.1.2017.
  • [16] C.D. Harmon, R.D. Busch, J.F. Briesmeister, R.A. Forster. Criticality Calculations with MCNP5™ – A Primer Appendix B: Calculating Atom Densities. Los Alamos National Laboratory Technical Manual, 1994. https://www.osti.gov/servlets/purl/10171566.
  • [17] Nuclear Energy Agency. NEA-1854 ZZ-SERPENT117-ACELIB, February 2016. http://www.oecd-nea.org/tools/abstract/detail/nea-1854.
  • [18] Pacific Northwest National Laboratory, Compendium of Material Composition Data for Radiation Transport Modeling, 2011, http://www.pnnl.gov/main/publications/external/technical_ reports/PNNL-15870Rev1.pdf.
  • [19] D.Vollath. Uranium Dioxide, UO2 Mechanical and Thermal Properties. Chapter 4, in: V. Haase, H. Keller-Rudek. U. Uranium: Suplement Volume C5 Uranium Dioxide UO2 Physical Properties. Electrochemical Behavior of Gmelin Handbook of Inorganic Chemistry, Springer, 1986. https://www.springer.com/gp/book/9783540935247.
  • [20] D.E. Ames. High-fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source. Ph.D. Thesis, Texas A&M University, College Station, USA, 2010.
  • [21] S. Pramuditya. Integral Fuel Burnable Absorber (IFBA): Atomic number density calculation. Technical discussion, 2009. https://syeilendrapramuditya.wordpress.com/2009/12/05/integralfuel-burnable-absorber-ifba-atomic-number-density-calculation.
  • [22] J.C. Wagner and C.V. Parks. Parametric study of the effect of burnable poison rods for PWR burn up credit. Technical Report. Oak Ridge National Laboratory, Sept. 2001. doi: 10.2172/814219.
  • [23] International Atomic Energy Agency. Control assembly materials for water reactors: Experience, performance and perspectives. Technical Report, 2000. http://www-pub.iaea.org/ MTCD/publications/PDF/te_1132_prn.pdf.
  • [24] M.A. Elsawi and A.S. Bin Hraiz. Benchmarking of the WIMS9/PARCS/TRACE code system for neutronic calculations of the Westinghouse AP1000TM reactor. Nuclear Engineering and Design, 293:249–257, 2015. doi: 10.1016/j.nucengdes.2015.08.008.
  • [25] Westinghouse. Optimized ZIRLO™. Report: WCAP-14342-A&CENPD-404-NP-A, Westinghouse Non-Proprietary Class 3, Addendum 1-A, 2006. http://pbadupws.nrc.gov/docs/ML0620/ ML062080569.pdf.
  • [26] S.M. Bragg-Sitton. Light Water Reactor Sustainability Program. Advanced LWR Nuclear Fuel Cladding System Development Technical Program Plan. Idaho National Laboratory, December 2012. https://lwrs.inl.gov/Advanced%20Light%20Water%20%20Nuclear%20Fuels/AdvLWRNucFuelCladdingSys_TPP_December2012.pdf.
  • [27] M. Billone, Y. Yan, and T. Burtseva. LOCA embrittlement test results for high-burnup cladding. USNRC Regulatory Information Conference, Rockville, MD, USA, March 12, 2008. http://www.nrc.gov/public-involve/conference-symposia/ric/past/2008/slides/billone.pdf.
  • [28] B.N. Burgos. LWR Materials for Commercial Nuclear Power Applications. ATR National Scientific User Facility, June 9, 2010. https://nsuf.inl.gov/Documents/BurgosINLTalkRevMay252010Complete.pdf.
  • [29] United States Nuclear Regulatory Commission. Westinghouse AP1000 Design Control Document Rev. 19–Tier2 Chapter5–Section 5.2 Integrity of Reactor Coolant Pressure Boundary, 2011.https://www.nrc.gov/docs/ML1117/ML11171A451.pdf.
  • [30] Carbon Steel Handbook. Electric Power Research Institute, Palo Alto, CA, 2007. 1014670. http://www.uobabylon.edu.iq/eprints/publication_12_18692_70.pdf.
  • [31] Y.M. Cheong, J.H. Kim, J.H. Hong, and H.K. Jung. Dynamic elastic constants of weld HAZ of SA 508 CL.3 steel using resonant ultrasound spectroscopy. 15th World Conference on Nondestructive Testing, Rome, Italy, 15–21 October, 2000. https://www.ndt.net/article/wcndt00/papers/idn432/idn432.htm.
  • [32] M. Holmgren. X-Steam Steam Tables for MATLAB. https://www.mathworks.com/matlab central/fileexchange/9817-x-steam-thermodynamic-properties-of-water-and-steam, 2007.
  • [33] J. Leppanen, R. Mattila, and M. Pusa. Validation of the SERPENT-Ares code sequence using the MIT BEAVRS benchmark – Initial core at HZP conditions. Annals of Nuclear Energy, 69:212–225, 2014. doi: 10.1016/j.anucene.2014.02.014.
  • [34] X.E. Tran and N.Z. Cho. A study of neutronics effects of the spacer grids in a typical PWR via Monte Carlo calculation. Nuclear Engineering and Technology, 48(1):33–42, 2016. doi: 10.1016/j.net.2015.10.001.
  • [35] International Atomic Energy Agency. Status report 81 – Advanced Passive PWR (AP 1000), 2011. https://aris.iaea.org/PDF/AP1000.pdf.
  • [36] F. Franceschini, A.T. Godfrey, and J.C. Gehin. AP1000 PWR Reactor Physics Analysis with VERA-CS and KENO-VI–PartI: Zero Power Physics Tests. Proceedings of the International Conference on Physics of Reactors (Physor 2014). Kyoto, Japan, Sept. 28 – Oct. 3, 2014. https://aris.iaea.org/PDF/AP1000.pdf.
  • [37] F. Franceschini, A. Godfrey, J. Kulesza, and R. Oelrich. Westinghouse VERA Test Stand–Zero Power Physics Test Simulations for the AP1000 PWR. Report CASL-U-2014-0012-000, 2014. https://www.casl.gov/sites/default/files/docs/CASL-U-2014-0012-001.pdf.
  • [38] G.L. Stefani, P.R. Rossi, J.R. Maiorino, and T.A. Santos. Neutronic and thermal-hydraulic calculations for the AP-1000 NPP with the MCNP6 and SERPENT codes. 2015 International Nuclear Atlantic Conference – INAC 2015, Sao Paulo, SP, Brazil, 4-9 October, 2015. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/46/133/46133779.pdf.
  • [39] R F. Mahmoud, M.K. Shaat, S.A.M. Agamy, and M.E-S. Nagy. Modeling and Validation of an Advanced Pressurized Water Reactor using Monte Carlo Technique. The International Journal of Science & Technoledge, 5(9):11–28, 2017. http://www.theijst.com/wpcontent/uploads/2017/10/2.-ST1709-023.pdf, 2017.
  • [40] S. Pinem, T.M. Sembiring, T. Deswandri, and G.R. Sunaryo. Reactivity coefficient calculations for AP1000 reactor using the NODAL3 code. Journal of Physics: Conf. Series 962:012057, 2018. doi: 10.1088/1742-6596/962/1/012057.
  • [41] A.L. Nigro and F.D’Auria. PWR core response to boron dilution transient. Proceedings of International Conference Nuclear Energy for New Europe 2003, Portorož, Slovenia, September 8–11,2003. http://193.2.7.48/proc/port2003/pdf/219.pdf.
  • [42] New York Power. Indian Point 3 Nuclear Power Plant–Cycle 11 Physics Test Report, IPN-00004. https://www.nrc.gov/docs/ML0036/ML003679481.pdf, 18.01.2000.
  • [43] Westinghouse Technology Systems Manual – Section 2.1 Reactor Physics Review, 2008. https://www.nrc.gov/docs/ML1122/ML11223A207.pdf.
  • [44] J. Leppanen and R. Mattila. Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark–HFP conditions and fuel cycle 1 simulations. Annal sof Nuclear Energy, 96:324–331, 2016.doi:10.1016/j.anucene.2016.06.014.
Uwagi
EN
The activates of the first author were financedbytheFacultyofPowerandAeronauticalEngineeringDeanGrantnumber 504/03264(2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5611b9b4-400f-4ea8-8d2a-47c494d1d4b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.