PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On fractional vectorial calculus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reviews the fractional vectorial differential operators proposed previously and introduces the fractional versions of the classic Green’s, Stokes’, and Ostrogradski-Gauss’s integral theorems. The suitability of fractional derivatives for sciences and the Laplacian definition are also discussed.
Rocznik
Strony
389--402
Opis fizyczny
Bibliogr. 67 poz., rys.
Twórcy
  • CTS-UNINOVA and DEE of Faculdade de Ciˆencias e Tecnologia da UNL, Campus da FCT da UNL, Quinta da Torre, 2829 – 516 Caparica, Portugal
  • Institute of Engineering, Polytechnic of Porto, Dept. of Electrical Engineering, Porto, Portugal
Bibliografia
  • [1] S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Sc. Publ., London, 1993.
  • [2] S. Dugowson, Les Differentielles Metaphysiques, Ph.D. Thesis, Universit´e Paris Nord, Villetaneuse, France, 1994, [In French].
  • [3] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • [4] R.L. Magin, Fractional Calculus in Bioengineering, Begell House, Connecticut, 2006.
  • [5] M.D. Ortigueira, Fractional calculus for scientists and engineers, Lecture Notes in Electrical Engineering, 84, Springer, Dordrecht (2011).
  • [6] D. Val´erio, J.J. Trujillo, M. Rivero, J.A.T. Machado, and D. Baleanu, “Fractional calculus: A survey of useful formulas”, Eur. Phys. J. Special Topics 222, 1827–1846, EDP Sciences, Springer-Verlag (2013).
  • [7] K.S. Cole and R.H. Cole, “Dispersion and absorption in dielectrics – I alternating current characteristics”, J. Chem. Phys. 9, 341–352 (1941).
  • [8] K.S. Cole and R.H. Cole, “Dispersion and absorption in dielectrics – II direct current characteristics”, J. Chem. Phys. 10, 98–105 (1942).
  • [9] S. Westerlund and L. Ekstam, “Capacitor theory”, IEEE Trans. Dielectr. Electr. Insul. 1(5), 826–839 (1994).
  • [10] B.E. Conway, Electrochemical Supercapacitors: Scientific Principles and Technological Application, Plenum, New York, (1999).
  • [11] I. Sch¨afer and K. Kr¨uger, “Modelling of coils using fractional derivatives”, Journal of Magnetism and Magnetic Materials 307, 91–98 (2006).
  • [12] K. Biswas, S. Sen, and P. Dutta, “Realization of a constant phase element and its performance study in a differentiator circuit”, IEEE Trans. Circuits Syst. II, Exp. Briefs 53(9), 802–806 (2006).
  • [13] D. Baleanu, A.K. Golmankhaneh, and M.C. Baleanu, “Fractional electromagnetic equations using fractional forms”, Int J. Theor. Phys. 48, 3114–3123 (2009).
  • [14] I.S. Jesus and J.T, Machado, “Development of fractional order capacitors based on electrolyte processes”, Nonlinear Dynamics 56, 45–55 (2009).
  • [15] I.S. Jesus and J.T. Machado, “Comparing integer and fractional models in some electrical systems”, Proceedings of FDA’10. The 4th IFAC Workshop Fractional Differentiation and its Applications, Badajoz, Spain, October 18–20 (2010).
  • [16] V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Higher Education Press and Springer, Beijing (2010).
  • [17] C.S. Drapaca and S. Sivaloganathan, “A fractional model of continuum mechanics”, J. Elast. 107, 105–123 (2012).
  • [18] M. D’Ovidio and R. Garra, Fractional Gradient and its application to the Fractional Advection Equation, arXiv: 1305.4400v1 math-ph, May 19, (2013).
  • [19] A.S. Ali, A.G. Radwan, and A.M. Soliman, “Fractional order Butterworth filter: Active and passive realizations”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems 3(3), (2013).
  • [20] S.I.R. Arias, D.R. Mu˜noz, J.S. Moreno, S. Cardoso, R. Ferreira, and P.J. Freitas, “Fractional modeling of the AC largesignal frequency response in magnetoresistive current sensors”, Sensors 13, 17516–17533 (2013).
  • [21] A.E. C¸ alik, H. Ertik, B. ¨Oder, and H. S¸ irin, “A fractional calculus approach to investigate the alpha decay processes”, International Journal of Modern Physics E 22(7), 1350049 (2013).
  • [22] F.A.A. El-Salam, “Fractional approach of Maxwell equations in the curved spacetime”, Journal of Taibah University for Science 7, 173–179 (2013).
  • [23] V. Martyniuk and M.D. Ortigueira, “Fractional model of an electrochemical capacitor”, Signal Processing 107, 355–360 (2015).
  • [24] I.S. Jesus, J.T. Machado, and J.B. Cunha, “Fractional electrical impedances in botanical elements”, Journal of Vibration and Control 14, 1389 (2008).
  • [25] U. Skwara, J. Martins, P. Ghaffari, M. Aguiar, J. Boto, and N. Stollenwerk, “Applications of fractional calculus to epidemiological models”, Numerical Analysis and Applied Mathematics, ICNAAM 2012, AIP Conf. Proc. 1479, 1339–1342 (2012).
  • [26] M.J. Lewis and M.A. McNarry, “Twenty-four hour variation in heart rate variability indices derived from fractional differintegration”, Clin. Physiol. Funct. Imaging 35(1), 57–63 (2015).
  • [27] C. Ionescu, J.T. Machado, and R. De Keyser, “Modeling of the lung impedance using a fractional order ladder network with constant phase elements”, IEEE Transactions on Biomedical Circuits and Systems 5(1), 83–89 (2011).
  • [28] D. Copot, R. De Keyser, E. Derom, M.D. Ortigueira, and C.M. Ionescu, “Reducing bias in fractional order impedance estimation for lung function evaluation”, Biomedical Signal Processing and Control 39, 74–80 (2018).
  • [29] J.A.T. Machado, “And I say to myself: What a fractional world!”, Fractional Calculus and Applied Analysis 14, 635 (2011).
  • [30] R. Magin, M.D. Ortigueira, I. Podlubny, and J. Trujillo, “On the Fractional Signals and Systems”, Signal Processing 91, 350–371 (2011).
  • [31] M.M. Meerschaert, J. Mortensen, and S.W. Wheatcraft, “Fractional vector calculus for fractional advection–dispersion”, Physica A 367, 181–190 (2006).
  • [32] M.M. Meerschaert, Fractional Calculus, Anomalous Diffusion, and Probability, in Fractional Dynamics: Recent Advances, edited by: J. Klafter, S. C. Lim, and R. Metzler, World Scientific Publishing Co. Pte. Ltd. (2011).
  • [33] R.L. Magin, C. Ingo, L. Colon-Perez, W. Triplett, and T.H. Mareci, “Characterization of anomalous diffusion in porous biological tissues using fractional order derivatives and entropy”, Microporous and Mesoporous Materials 178, September 15, pp. 39–43 (2013).
  • [34] L. Boyadjiev and Y. Luchko, “Multi-dimensional-fractional diffusion–wave equation and some properties of its fundamental solution”, Computers & Mathematics with Applications 73(12), 2561–2572 (2017).
  • [35] M. Ostoja-Starzewski, “Continuum mechanics models of fractal porous media: Integral relations and extremum principles”, Journal of Mechanics of Materials and Structures 4(5), 901–912 (2009).
  • [36] G. Calcagni, “Geometry of fractional spaces”, Adv. Theor. Math. Phys. 16, 549–644 (2012).
  • [37] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, (2010).
  • [38] M.P. Velasco and L. V´azquez, “On the fractional Newton and wave equation in one space dimension”, Appl. Math. Modelling 38(13), 3314–3324 (2014).
  • [39] V.E. Tarasov, “Fractional generalization of gradient and Hamiltonian systems”, J. Phys. A: Math. Gen. 38, 5929–5943 (2005).
  • [40] V.E. Tarasov, “Review of some promising fractional physical models”, International Journal of Modern Physics B 27(9), 1330005 (2013).
  • [41] R. Herrmann, “Gauge invariance in fractional field theories”, Vol. 2, Physics Letters A 372, 5515–5522 (2008).
  • [42] R. Herrmann, Fractional Calculus: An Introduction for Physicists, World Scientific Publishing Co. Pte. Ltd. (2011).
  • [43] M.D. Ortigueira, M. Rivero, and J. Trujillo, “From a generalized Helmholtz decomposition theorem to the fractional Maxwell equations”, Commun Nonlinear Sci Numer Simulat 22, 1036–1049 (2015).
  • [44] M.D. Ortigueira and J. Machado, “Which derivative? Fractal and fractional”, Fractal and Fractional 1(1), 3 (2017).
  • [45] M. Ostoja-Starzewski, J. Li, H. Joumaa, and P.N. Demmie, “From fractal media to continuum mechanics”, Z. Angew. Math. Mech. 94, 373–401 (2014).
  • [46] V.E. Tarasov, “Fractional vector calculus and fractional Maxwell’s equations”, Annals of Physics 323(11), 2756–2778 (2008).
  • [47] E.C. Grigoletto and E.C. de Oliveira, “Fractional versions of the fundamental theorem of calculus”, Applied Mathematics 4, 23–33 (2013).
  • [48] M.D. Ortigueira and J. Machado, “Fractional definite integral”, Fractal and Fractional 1(1), 2 (2017).
  • [49] A. Aghili and P.B. Moghaddam, “Certain theorems on two dimensional Laplace Transform and non-homogeneous parabolic partial differential equations”, Surveys in Mathematics and its Applications 6, 165–174 (2011).
  • [50] M.J. Roberts, Signals and Systems: Analysis Using Transform Methods and Matlab, McGraw-Hill, 2003.
  • [51] M.D. Ortigueira and J.T. Machado, “What is a fractional derivative?”, J. Comput. Phys. 293, 4–13 (2015).
  • [52] M.D. Ortigueira, R.L.Magin, J.J. Trujillo, M.P. Velasco, “A real regularized fractional derivative”, Signal Image Video P, 6, 351–358 (2012).
  • [53] J. Liouville, “Memóire sur le calcul des diff´erentielles `a indices quelconques”, Journal de l’´Ecole Polytechnique 13, 71–162 (1832). (In French)
  • [54] J. Liouville, “Memóire sur l’usage que l’on peut faire de la formule de Fourier, dans le calcul des diff´erentielles `a indices quelconques”, Journal f ¨ur die reine und angewandte Mathematik (Journal de Crelle) 13, 219–232 (1835). (In French)
  • [55] M.D. Ortigueira, “Riesz potential operators and inverses via fractional centred derivatives”, International Journal of Mathematics and Mathematical Sciences 2006, ID 48391, pp. 1–12 (2006).
  • [56] M.D. Ortigueira, “Fractional central differences and derivatives”, Journal of Vibration and Control 14(9–10), 1255–1266 (2008).
  • [57] M.D. Ortigueira and J.J. Trujillo, “A unified approach to fractional derivatives”, Commun Nonlinear Sci. Numer. Simulat. 17, 5151–5157 (2012).
  • [58] M. Riesz, “L’integral de Riemann-Liouville et le probleme de Cauchy”, Acta Mathematica 81(1), 1–222 (1949).
  • [59] W. Chen and S. Holm, “Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency dependency”, The Journal of the Acoustical Society of America 115(4), 1424–1430 (2004).
  • [60] L. Caffarelli and L. Silvestre, “An extension problem related to the fractional Laplacian”, Communications in Partial Differential Equations 32(8), 1245–1260 (2007).
  • [61] M.D. Ortigueira, T.-L. Laleg-Kirati, and J.T. Machado, “Riesz potential versus fractional Laplacian”, Journal of Statistical Mechanics: Theory and Experiment 2014(9), P09032 (2014).
  • [62] D.A.W. Pecknold, “On the role of the Stokes-Helmholtz decomposition in the derivation of displacement potentials in classical elasticity”, Journal of Elasticity 1(2), 171–174 (1971).
  • [63] D.D. Joseph, “Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid”, Proceedings of the National Academy of Sciences of USA 103(39), 14272–14277 (2006).
  • [64] E. Kapuścik, “Generalized Helmholtz theorem and gauge invariance of classical field theories”, Lett. Nuovo Cimento 42, 263–266 (1985).
  • [65] R.D. Nevels, A Simple ‘Derivation’ of Maxwell’s Equations Relying on the new Extended Helmholtz Theorem, IEEE Ant. Prop. Soc. Int. Symp. Newport Beach, California, pp. 822–825 (1995).
  • [66] E.K. Jaradat, R.S. Hijjawi, and J.M. Khalifeh, “Maxwell’s equations and electromagnetic Lagrangian density in fractional form”, Journal of Mathematical Physics 53, 033505 (2012).
  • [67] T. Apostol, Mathematical Analysis, Addison Wesley, Fifth Edition, (1981).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-560f62dd-8874-4276-ac7d-e2923ba1fb5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.