PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Modelling of Mechanical Behaviour of High-Frequency Piezoelectric Actuators Using Bouc-Wen Model

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents application of a modified, symmetrical Bouc-Wen model to simulate the mechanical behaviour of high-frequency piezoelectric actuators (PAs). In order to identify parameters of the model, a two-step algorithm was developed. In its first stage, the mechanical parameters were identified by taking into account their bilinear variability and using a square input voltage waveform. In the second step, the hysteresis parameters were determined based on a periodic excitation. Additionally, in order to reduce the influence of measurement errors in determination of selected derivatives the continuum wavelet transform (CWT) and translation-rotation transformation (TRT) methods were applied. The results proved that the modified symmetrical Bouc-Wen model is able to describe the mechanical behaviour of PAs across a wide frequency range.
Rocznik
Strony
413--424
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • [1] Sohrabi, M.A., Muliana, A. H. (2015). Nonlinear and time dependent behaviors of piezoelectric materials and structures. Int. J. Mech. Sci., 94-95, 1-9.
  • [2] Gu, G., Zhu, L. (2011). Modeling of rate-dependent hysteresis in piezoelectric actuators using a family of ellipses. Sensors Actuat. A-Phys., 165(2), 303-309.
  • [3] Wang, X., Pommier-Budinger, V., Reysset, A., Gourinat Y. (2014). Simultaneous compensation of hysteresis and creep in a single piezoelectric actuator by open-loop control for quasi-static space active optics applications. Control Eng. Pract., 33, 48-62.
  • [4] Lin, C.-J., Lin, P.-T. (2012). Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model. Comput. Math. Appl., 64(5), 766-787.
  • [5] Liu X., Wang Y., Geng J., Chen Z. (2013). Modeling of hysteresis in piezoelectric actuator based on adaptive filter. Sensors Actuat. A-Phys., 189, 420-428.
  • [6] Ghafarirad, H., Rezaei, S.M., Sarhan, A.A.D., Mardi, N.A., Zareinejad, M. (2014). A novel time dependent Prandtl-Ishlinskii model for sensorless hysteresis compensation in piezoelectric actuators. IFAC Proceedings Volumes, 47(3), 2703-2708.
  • [7] Zhu, W., Wang, D.H. (2012). Non-symmetrical Bouc-Wen model for piezoelectric ceramic actuators. Sensors Actuat. A-Phys., 181, 51-60.
  • [8] Zhu, W., Rui, X.-T. (2016). Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc-Wen model. Precis. Eng., 43, 299-307.
  • [9] Wang, D.H., Zhu, W. (2011). A phenomenological model for pre-stressed piezoelectric ceramic stack actuators. Smart Mater. Struct., 20(3), 035018, (11 pp.).
  • [10] Wang, Z., Zhang, Z., Mao, J., Zhou, K. (2012). A Hammerstein-based model for rate-dependent hysteresis in piezoelectric actuator. Proc. of the 2012 24th Chinese Control and Decision Conference. Taiyuan, China, 1391-1396.
  • [11] Wang, G., Chen, G., Bai, F. (2015). High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation. Microsyst. Technol., (11 pp).
  • [12] Xu, Q. (2013). Identification and compensation of piezoelectric hysteresis without modeling hysteresis inverse. IEEE T. Ind. Electron., 60(60), 3927-3937.
  • [13] Bouc, R. (1967). Forced vibration of mechanical systems with hysteresis. Proc. of the 4th Conference on Nonlinear Oscillation., Prague, Czechoslovakia, 315.
  • [14] Wen, Y.K. (1976). Method for random vibration of hysteretic systems. J. Eng. Mech.-ASCE, 102(2), 249-263.
  • [15] Low, T.S., Guo, W. (1995). Modeling of three-layer piezoelectric bimorph beam with hysteresis. IEEE J. Microelectromech. Syst., 4(4), 230-237.
  • [16] Wang, Z., Mao, J. (2010). On PSO based Bouc-Wen modeling for piezoelectric actuator. 3rd International Conference on Intelligent Robotics and Applications., Shanghai, China, 125-134.
  • [17] Ha, J.L., Kung, Y.S., Fung, R.F., Hsien, S.C. (2006). A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm. Sensors Actuat. A-Phys., 132, 643-650.
  • [18] Wang, G., Chen, G., Bai, F. (2015). Modeling and identification of asymmetric Bouc-Wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm. Sensors Actuat. A-Phys., 235, 105-118.
  • [19] Luo J.W., Bai J., Shao J.H., (2006). Application of the wavelet transforms on axial strain calculation in ultrasound elastography. Prog. Nat. Sci., 16(9), 942-947.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-560f093d-26ea-49ac-ae59-47833ea4f2c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.