Identyfikatory
Warianty tytułu
Produkcja betonu przy użyciu proszku marmurowego i gruboziarnistych kruszyw marmurowych: analiza właściwości mechanicznych i zrównoważonego rozwoju
Języki publikacji
Abstrakty
The growing demand for concrete driven by infrastructure and urbanization puts pressure on natural resources and harms the ecosystem. Using recycled materials like waste marble powder (WMP) and marble coarse aggregates (MCA) in concrete can address this demand while maintaining quality. This study explores the mechanical properties of eco-friendly concrete with varying levels of marble waste substitution, replacing cement with WMP (0%-10%) and natural aggregates with MCA (10%-90%). A combination of destructive and non-destructive tests, including the Schmidt hammer and ultrasonic velocity tests, was used to assess flexural, compressive, and split tensile strengths. Results showed a 15.78% increase in workability when marble coarse aggregates were added. Compressive strength gained up to 44.02% on day 14 with 10% marble powder and 70% marble aggregates, compared to the control mixture. Split tensile strength improved by 11.02%, 11%, and 10.33% on days 7, 14, and 28, respectively, for mixes with 70% marble aggregates. Ultrasonic pulse velocity ranged from 3.68 km/s to 4.71 km/s, indicating no negative impact on concrete quality. The Schmidt hammer results correlated well with compressive strength from destructive tests. Overall, the study highlights the potential of using marble waste as an effective substitute for natural aggregates in concrete.
Rosnące zapotrzebowanie na beton spowodowane rozwojem infrastruktury i urbanizacji powoduje niszczenie zasobów naturalnych i szkodzi ekosystemowi. Wykorzystanie w betonie materiałów pochodzących z recyklingu, takich jak proszek z odpadów marmurowych (WMP) i grube kruszywa marmurowe (MCA), może zaspokoić to zapotrzebowanie przy jednoczesnym zachowaniu jakości i dbaniu o ekologię. W niniejszym badaniu oceniono właściwości mechaniczne ekologicznego betonu o różnym poziomie zawartości odpadów marmurowych – zastąpiono cement WMP (0%-10%) i naturalne kruszywa MCA (10%-90%). Do oceny wytrzymałości na zginanie, ściskanie i rozciąganie przy rozłupywaniu wykorzystano kombinację testów niszczących i nieniszczących, w tym młotek Schmidta i ultradźwiękowe testy prędkości. Wyniki wykazały wzrost urabialności o 15,78% po dodaniu marmurowych kruszyw gruboziarnistych. W porównaniu do mieszanki kontrolnej po dodaniu 10% proszku marmurowego i 70% kruszywa marmurowego wytrzymałość na ściskanie wzrosła do 44,02% w dniu 14. Wytrzymałość na rozciąganie przy rozłupywaniu wzrosła o 11,02%, 11% i 10,33% odpowiednio w dniach 7, 14 i 28 dla mieszanek z 70% kruszywem marmurowym. Prędkość impulsu ultradźwiękowego wynosiła od 3,68 km/s do 4,71 km/s, co wskazuje na brak negatywnego wpływu na jakość betonu. Wyniki młotka Schmidta dobrze korelowały z wytrzymałością na ściskanie z testów niszczących. Badanie podkreśla potencjał wykorzystania odpadów marmurowych jako skutecznego substytutu naturalnych kruszyw w betonie.
Czasopismo
Rocznik
Tom
Strony
63--81
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
autor
- Department of Physics; Laboratory of Materials Waves, Energy and Environment; Team of Materials, Energy, Civil Engineering and Environment; Faculty of Sciences; Mohammed Premier University
autor
- Department of Applied Engineering; Laboratory of Materials, Waves, Energy and Environment; Team of Materials, Energy, Civil Engineering and Environment; Higher School of Technology; Mohammed Premier University
Bibliografia
- [1] Ullah K., Qureshi M. I., Ahmad A., Ullah Z., “Substitution potential of plastic fine aggregate in Concrete for sustainable production”, Structures, vol. 35, (2022), 622-637. https://doi.org/10.1016/j.istruc.2021.11.003
- [2] Aruntas H. Y., Gürü M., Dayi M., Tekin I., “Utilization of waste marble dust as an additive in cement production”, Materials & Design, vol. 31, (2010), 40394042. https://doi.org/10.1016/j.matdes. 2010.03.036
- [3] Anwar A., Ahmad S., Ashraf Husain A., Ahmad S.A., “Replacement of cement by marble dust and ceramic waste in concrete for sustainable development”, International Journal of Innovative Research in Science, Engineering and Technology, vol. 2(6), (2015), 496-503.
- [4] Jang J. G., Lee. H. K., “Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement”, Cement and Concrete Research, vol. 82, (2016), 50-57. https://doi.org/10.1016/j.cemconres.2016.01.001
- [5] Rashad A. M. “Metakaolin as cementitious material: history, scours, production and composition – a comprehensive overview”, Construction and Building Materials, vol. 41, (2013), 303-318. https://doi.org/10.1016/j.conbuildmat.2012.12.001
- [6] Sankh A. C., Biradar P. M., Naghathan S. J., Ishwargol M.B., “Recent trends in replacement of natural sand with different alternatives”, Journal of Mechanical and Civil Engineering, (2014), 59-66.
- [7] Ismail S., Ramli M., “Engineering properties of treated recycled concrete aggregate (RCA) for structural applications”, Construction and Building Materials, vol. 44, (2013), 464-476. https://doi.org/10.1016/j.conbuildmat.2013.03.014
- [8] Arulmoly B., Konthesingha C., Nanayakkara A., “Performance evaluation of cement mortar produced with manufactured sand and offshore sand as alternatives for river sand”, Construction and Building Materials, vol. 297, (2021), 123784. https://doi.org/10.1016/j.conbuildmat.2021.123784
- [9] Akbulut S. K., Gürer G., “Use of aggregates produced from marble quarry waste in asphalt pavements”, Building and Environment, vol. 42, (2007), 1921-1930. https://doi.org/10.1016/j.buildenv.2006.03.012
- [10] Binici H., Shah T., Aksogan O., Kaplan H., “Durability of concrete made with granite and marble as recycle aggregate”, Journal of Materials Processing Technology, vol. 208, (2008), 299-308. https://doi.org/j.jmatprotec.2007.12.120
- [11] Hebhoub H., Aoun H., Belachia M., Houari H., Ghorbel E., “Use of waste marble aggregates in concrete”, Construction and Building Materials, vol. 25, (2011), 1167-1171. https://doi.org/10.1016/j.conbuildmat.2010.09.037
- [12] Gencel O., Ozelb C., Fuat Koksal F., Erdogmus E., Martínez-Barrera G., Brostow W., “Properties of concrete paving blocks made with waste marble”, Journal of Cleaner Production, vol. 21(1), (2012), 62-70. https://doi.org/10.1016/j.jclepro.2011.08.023
- [13] André A., Performance in durability terms of concrete incorporating waste coarse aggregates from the marble industry, Instituto Superior Tecnico, Universidade Tecnica de Lisbona, Lisbon, 2012.
- [14] André A., Brito De., Rosa A., Pedro D., “Durability performance of concrete incorporating coarse aggregates from marble industry waste”, Journal of Cleaner Production, vol. 65, (2014), 389-396. https://doi.org/10.1016/j.jclepro.2013.09.037
- [15] Ceylan H., Manca S., “Evaluation of concrete aggregate marble pieces”, SDU J. Tech. Sci., vol. 3, (2013), 21-25.
- [16] Martins P., De Brito J., Rosa A., Pedro D., “Mechanical performance of concrete with the incorporation of coarse waste from the marble industry”, Materials Research, vol. 17(5), (2014), 1093-1101. https://doi.org/10.1590/1516-1439.210413
- [17] Kore S. D., Vyas A. K., “Impact of marble waste as coarse aggregate on properties of lean cement concrete”, Case Studies in Construction Materials, vol. 4, (2016), 85-92. https://doi.org/10.1016/j.cscm.2016.01.002
- [18] Kore S. D., Vyas A. K., “Cost effective design of sustainable concrete using marble waste as coarse aggregate”, Journal of Materials and Engineering Structures, vol. 3, (2016), 167-180.
- [19] Sunil S., Varghese N., “Study on waste marble as partial replacement of coarse aggregate in concrete”, International Journal of Scientific & Engineering Research, vol. 11(10), (October 2020).
- [20] Sahu S., Thakur C. S., Dubey S., “Analyzing the strength of waste marble used concrete and plain concrete”, International Research Journal of Modernization in Engineering Technology and Science, vol. 3(4), (2021), pp. 367-372.
- [21] Gencel O., Nodehi M., Bayraktar O. Y., Kaplan G., Benli A., Koksal F., Bilir T., Siddique R., Ozbakkaloglu T., “The use of waste marble for cleaner production of structural concrete: A comprehensive experimental study", Construction and Building Materials, vol. 361, (2022), 129612. https://doi.org/10.1016/j.conbuildmat.2022.129612
- [22] Sowjanya M., Raju N., Bhavananda L., Vishnu Vardhan O., Lokesh S. S., “Behaviour of pervious concrete using marble waste s coarse aggregate”, Journal of Engineering Sciences, vol. 14(2), (2023), 429-441.
- [23] NM 10.1.004, Hydraulic binders; Cements, Norme Marocaine, 2003.
- [24] NM 10.1.353, Concrete mixing water specifications for sampling, testing and evaluation of suitability of use, including process water from the concrete industry, 1985.
- [25] NF EN 12620, The characteristics of aggregates and fillers, 2003.
- [26] NF P-18-560, AFNOR, Aggregates – Particle size analysis by sieving, 1990.
- [27] EN 12350-2, Testing fresh concrete – Part 2: Slump test, 2019.
- [28] NF EN 12390-3, Tests for hardened concrete – Part 3: Compressive strength of specimens.
- [29] NF EN 12390-6, Tests for hardened concrete – Part 6: Determination of tensile splitting. strength of specimens.
- [30] NF EN 12390-5, Tests for hardened concrete – Part 5: Flexural strength on specimens, 2019.
- [31] NF EN 12504-4, Testing concrete in structures – Part 4: Determination of ultrasonic pulse velocity, 2021.
- [32] NF EN 12504-2, Tests for concrete in structures - Part 2: Non-destructive tests – Determination of rebound number, 2013.
- [33] Aliabdo A. A., Abd Elmoaty A. E. M., Auda E. M., “Re-use of waste marble dust in the production of cement and concrete”, Construction and Building Materials, vol. 50, (2014), 28-41. https://doi.org/10.1016/j.conbuildmat.2013.09.005
- [34] Ashish D. K., “Concrete made with waste marble powder and supplementary cementitious material for sustainable development”, Journal of Cleaner Production, vol. 211, (2018), 716-729. https://doi.org/10.1016/j.jclepro.2018.11.245
- [35] Vardhan K., Siddique R. and Goyal S., “Influence of marble waste as partial replacement of fine aggregates on strength and drying shrinkage of concrete”, Construction and Building Materials, vol. 228, (2019), 116730. https://doi.org/10.1016/j.conbuildmat.2019.116730
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-560e512b-dd94-4930-84ce-a3f07343409d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.