PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study on the Detonation Reaction-zone and Energy Release Characteristics of a Cast HMX-based PBX

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article gives a comprehensive study of the detonation reaction-zone (DRZ) and energy release characteristics of a cast HMX-based polymer-bonded explosive, PBX-91C, which has been demonstrated in our previous study to be an insensitive explosive. The DRZ of PBX-91C was studied by the impedance window method; the detonation reaction time, DRZ length, and detonation pressure were obtained. The cylinder test was employed to evaluate the acceleration ability of PBX-91C, the Gurney velocity and the parameters of the Jones-Wilkins-Lee (JWL) equation of state (EOS) for PBX-91C. The shock overpressure test was carried out to evaluate the energy release characteristics of PBX-91C in free-field; TNT was also tested for comparison. On the basis of the parameters of the JWL EOS determined by the cylinder test, three-dimensional numerical simulations of the shock overpressure tests were conducted. The results showed that PBX-91C is substantially more powerful than TNT; moreover, the energy release of PBX-91C is more rapid. All of these results suggest that the detonation performance of PBX-91C is close to that of RDX. PBX-91C can be a good candidate for main charges as it has both high energy and low sensitivity.
Rocznik
Strony
380--398
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • School of Mechatronic Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621999, Sichuan, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621999, Sichuan, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621999, Sichuan, China
autor
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621999, Sichuan, China
  • Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621999, Sichuan, China
  • School of Mechatronic Engineering, Beijing Institute of Technology (BIT), Beijing 100081, China
Bibliografia
  • [1] Gibbs, T.R.; Popolato, A. LASL Explosive Property Data. University of California Press, Berkeley, CA, 1980.
  • [2] Xiao, H.M. Structures and Properties of Energetic Compounds (in Chinese). National Defense Industry Press, Beijing, China, 2004.
  • [3] Zhang, C.Y.; Peng, Q.; Wang, L.; Wang, X. Thermal Sensitivity of HMX Crystals and HMX-Based Explosives Treated under Various Conditions. Propellants Explos. Pyrotech. 2010, 35: 561-566.
  • [4] Agrawal, J. High Energy Materials: Propellants, Explosives and Pyrotechnics. John Wiley & Sons, 2010; ISBN 978-3-527-32610-5.
  • [5] Elbeih, A.; Wafy, T.Z.; Elshenawy, T. Performance and Detonation Characteristics of Polyurethane Matrix Bonded Attractive Nitramines. Cent. Eur. J. Energ. Mater. 2017, 14(1): 77-89.
  • [6] Li, J.S. A New Method for Evaluating the Energy Characteristics of C-H-N-O Energetic Compounds. Propellants Explos. Pyrotech. 2010, 35: 182 -185.
  • [7] Gogulyaa, M.F.; Brazhnikova, M.A.; Makhov, M.N.; Dolgoborodov, A.Y.; Lyubimov, A.V.; Sokolova, I.L. Effect of Aluminum on the Acceleration Ability of Composite Formulations Based on Regular High Explosives. Russ. J. Phys. Chem. B 2012, 6(6): 730-743.
  • [8] Duff, R.E.; Houston, E. Measurement of Chapman Jouguet Pressure and Reaction Zone Length in a Detonating High Explosive. J. Chem. Phys. 1955, 23(7): 1268-1273.
  • [9] Gatilov, L.A.; Ibragimov, R.A.; Kudashov, A.V. Detonation Wave Structure in Cast TNT. Combust. Explos. Shock Waves 1989, 25(2): 82-84.
  • [10] Erskine, D.J.; Green, L.; Tarver, C.M. VIZAR Wave Profile Measurements in Supracompressed HE. In: Shock Compression of Condensed Matter (Schmidt, S.C.; Johnson, J.N.; Davison, L.W., Eds.), Elsevier, Amsterdam, 1990, 717-720.
  • [11] Loboiko, B.G.; Lubyatinsky, S.N. Reaction Zones of Detonating Solid Explosives. Combust. Explos. Shock Waves 2000, 36(6): 716-733.
  • [12] Frank, A.; Chau, H.; Lee, R.; Vitello, P.; Souers, P.C. Reaction Zones in Ultrafine TATB. Propellants Explos. Pyrotech. 2003, 28(5): 259-264.
  • [13] Ershov, A.P.; Satonkina, N.P. Investigation of the Reaction Zone in Heterogeneous Explosives Substances Using an Electrical Conductivity Method. Combust. Explos. Shock Waves 2009, 45(2): 205-210.
  • [14] Utkin, A.; Mochalova, V. Detonation Wave Parameters of PETN and CL-20. Int. Det. Symp., Proc., 15th, San Francisco, USA, 2014.
  • [15] Reaugh, J.E.; Souers, P.C. A Constant-density Gurney Approach to the Cylinder Test. Propellants Explos. Pyrotech. 2004, 29(2): 124-128.
  • [16] Martin, K.; Jakub, S.; Jiri, P. First Attempts in Cylinder Expansion Testing. New Trends Res. Energ. Mater., Proc. Semin., 20th, Czech Republic, 2017.
  • [17] Gurney, R.W. The Initial Velocities of Fragments from Bombs, Shells and Grenades. Ballistic Research Laboratory report 405, Aberdeen, Maryland, 1943.
  • [18] Kennedy, J.E. The Gurney Model of Explosive Release for Driving Metal. Explos. Eff. Appl. 1998, 221-257.
  • [19] Lee, R.J.; Felts, J.E.; Williams, J.H.; Woodworth, B. Comparison of Small-scale Tunnel and Large-scale Free-field Blast Performance. Int. Det. Symp., Proc., 15th, San Francisco, USA, 2014.
  • [20] Yin, M.; Luo, G.; Dai, X.G.; Zhang, P.J.; Tang, Y. Cook-off Test Investigation of High Solid-content Casted PBX Based on HMX (in Chinese). Chin. J. Explos. Propellants (Huozhayao Xuebao) 2014, 37(1): 44-48.
  • [21] Yin, M.; Luo, G.; Zheng, B.H.; Tang, Y.; Liu, X.W.; Dai, X.G.; Han, Y.; Huang, H.; Wu, K.X. Design and Performance of an Insensitve Cast PBX with High Gurney Energy (in Chinese). Chin. J. Energ. Mater. (Hanneng Cailiao) 2014, 22(4): 487-492.
  • [22] Briggs, M.E.; Hill, L.G.; Hull, L.M.; Shinas, M.A. Applications and Principles of Photon Doppler Velocimetry for Explosive Testing. Int. Det. Symp., Proc., 14th, Coeur d’Alene, Idaho, 2010.
  • [23] Liu, D.Y.; Chen, L.; Wang, C.; Zhang, L.S. Detonation Reaction-Zone Structure of CL-20. (in Chinese) Nat. Symp. Explos. Mech., Proc., 10th, Guiyang, China. 2014, 325-329.
  • [24] Dobratz, B.M.; Crawford, P.C. LLNL Explosives Handbook, Properties of Chemical Explosives and Explosive Simulants. UCRL-52997 Rev. 2, Livermore, CA, 1985.
  • [25] Baudin, G.; Serradeill, R. Review of Jones-Wilkins-Lee Equation of State. Eur. Phys. J. Conf., Proc., 10th, 2010.
  • [26] Sanchidrian, J.A.; Castedo, R.; Lopez, L.M.; Segarra, P.; Santos, A.P. Determination of the JWL Constants for ANFO and Emulsion Explosives from Cylinder Test Data. Cent. Eur. J. Energ. Mater. 2015, 12(2): 177-194.
  • [27] Trzciński, W.A.; Szymańczyk, L.; Kramarczyk, B. Determination of the Equation of State for the Detonation Products of Emulsion Explosives. Cent. Eur. J. Energ. Mater. 2019, 16(1): 49-64.
  • [28] Elbeih, A.; Elshenawy, T.; Zeman, S.; Aksten, Z. Application of BCHMX in Shaped Charges against RHA Targets Compared to Different Nitramine Explosives. Cent. Eur. J. Energ. Mater. 2018, 15(1): 3-17.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-560aaa15-3763-4f01-99ee-d8ebab894c55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.