PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of fertigation on soil pollution during greenhouse plant cultivation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ fertygacji na zanieczyszczenie gleb podczas uprawy roślin w obiektach szklarniowych
Języki publikacji
EN
Abstrakty
EN
The aim of study was to investigate the effect of nutrient solution leakage during plant cultivation in greenhouse on soil pollution. Investigations were conducted in horticultural farms in the Wielkopolskie province (Greater Poland), specializing in soilless plant cultivation in greenhouse. In the first farm located on sandy soil tomato has been grown since its establishment (Object A). Prior to the beginning of crop culture soil samples were collected for analyses at every 0.2 m layer, to the depth of one meter. Successive samples were taken also in autumn after the completion of 1, 2, 3 and 7 culture cycles. For comparison, research was also conducted in a greenhouse located on loamy sand/sandy loam soil used for 8 years for tomato culture (Object B). In all these facilities plants in rockwool were grown and the fertigation in an open system was provided. Chemical analyzes showed the dynamics of soil properties changes and vertical distribution of cations and anions within the soil profile. Increased content of almost all nutrients and particularly of S-SO4, P, K, Zn, N-NH4, N-NO3 in the soil profile in object A and S-SO4, K, P, N-NO3 in the soli profile in object B were recorded. The results showed that the degradation rate of the soil environment as a result of open fertigation system application depends primarily on the duration of greenhouse operation. However, explicit changes in the chemical properties of soils were observed already after the first growth cycle. Smaller doses of fertilizers and water, and in consequence reduction of nutrients losses may be achieved by closed fertigation systems.
PL
Celem pracy było zbadanie wpływu wyciekającej pożywki podczas uprawy roślin w obiektach szklarniowych na zanieczyszczenie gleby. Badania prowadzono w gospodarstwach ogrodniczych na terenie województwa wielkopolskiego, specjalizujących się w bezglebowej uprawie roślin. W pierwszej z nich, zlokalizowanej na glebie piaszczystej, od początku specjalizowano się w uprawie pomidorów (obiekt A). Przed rozpoczęciem pierwszego cyklu uprawy pobierano próby gleby do analiz chemicznych z kolejnych warstw co 0,2 m, aż do głębokości jednego metra. Kolejne próby pobierano co roku jesienią po zakończeniu 1, 2, 3 i 7 cyklu uprawy. Każdy cykl trwał około 10 miesięcy. Dla porównania przeprowadzono także badania w szklarni zlokalizowanej na glebie gliniasto- piaszczystej, w której uprawiono pomidory przez 8 lat (Obiekt B). W obu obiektach rośliny uprawiano w wełnie mineralnej z wykorzystaniem otwartego systemu fertygacyjnego. Wyniki analiz chemicznych pozwoliły zobrazować dynamikę zmian oraz pionowe rozmieszczenie kationów i anionów w profilu glebowym. Stwierdzono wzrost zawartości niemal wszystkich składników, a szczególnie S-SO4, P, K, Zn, N-NH4, N-NO3 w profilu glebowym obiektu A oraz S-SO4, K, P, N-NO3 w profilu glebowym obiektu B. Intensywność degradacji środowiska glebowego spowodowanego stosowaniem otwartych systemów fertygacyjnych zależy przede wszystkim od długości użytkowania szklarni, jednak wyraźne zmiany właściwości chemicznych gleb stwierdzano już po pierwszym cyklu uprawy roślin. Mniejsze zużycie nawozów i wody, a w konsekwencji mniejsze straty składników, można uzyskać stosując zamknięte systemy fertygacyjne.
Rocznik
Strony
75--81
Opis fizyczny
Bibliogr. 35 poz., tab., rys.
Twórcy
autor
  • Poznań University of Life Sciences, Poland Department of Plant Nutrition
autor
  • Poznań University of Life Sciences, Poland Department of Plant Nutrition
Bibliografia
  • [1] Bamsey, M., Graham, T., Thompson, C., Berinstain, A., Scott, A. & Dixon, D. (2012). Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems, Sensors, 12, pp. 13349-13392.
  • [2] Brady, N. & Weil, R. (2009). Elements of the nature and properties of soils, Pearson Education Verlag, New Jersey 2009.
  • [3] Brajeul, E., Pineau, S., Guitton, Y., Maillarde, E., Loda, D. & Lesourd, D. (2005). The fertigation in soilless recirculating system. CLOSYS automated management tool, Infos Ctifl, 210, pp. 31-34. (in French)
  • [4] Branas, F.J. (2005). Effect of tomato fertigation with nutrient solutions in soilless culture in the Spanish southeast, Ph.D. Dissertation. University of Almería, Spain 2005 (In Spanish).
  • [5] Breś, W. (2009). Estimation of nutrient losses from open fertigation system to soil during horticultural plant cultivation, Polish Journal of Environmental Studies, 18, 3, pp. 341-345.
  • [6] Breś, W. (2010). Influence of soilless cultures on soil environment, Ecological Chemistry and Engineering A, 17, 9, pp. 1069-1076.
  • [7] Castilla, N.N. (2002). Current situation and future prospects of protected crops in the Mediterranean region, Acta Horticulturae, 582, pp.135-147.
  • [8] Cuervo, B.W.J., Florez, R.V.J. & Gonzalez, M.C.A. (2012). Aspects to consider for optimizing a substrate culture system with drainage recycling, Agronomia Colombiana, 30, 3, pp. 379-387.
  • [9] Gallardo, M., Thompson, R.B., Rodriguez, J.S., Rodriguez, F., Fernandez, M.D., Sanchez, J.A. & Magán, J.J. (2009). Simulation of transpiration, drainage, N uptake, nitrate leaching, and N uptake concentration in tomato grown in open substrate, Agricultural Water Management, 96, pp. 1773-1784.
  • [10] Giuffrida, F., Lipari, V. & Leonardi, C. (2003). A simplified management of closed soilless cultivation systems, Acta Horticulturae, 614, pp. 155-160.
  • [11] GUS 2012. Environment protection 2012. Statistical information and elaborations, Central statistical office, Warsaw 2012.
  • [12] Hansson, T. (2003). Drainage water in greenhouses - the collection and use reduces environmental impact, Jordbruksverket, Jordbruksinformation, 16, pp. 1-8. (in Swedish)
  • [13] Hu, Y., Song, Z., Lu, W., Poschenrieder, C. & Schmidhalter, U. (2012). Current soil nutrient status of intensively managed greenhouse, Pedosphere, 22 (6), pp. 825-833.
  • [14] IUNG (1983). Analytical methods in agricultural chemical laboratories, Part IV, Series P., Puławy 1983. (in Polish)
  • [15] Jordan, C. & Smith, R.V. (2005). Methods to predict the agricultural contribution to catchment nitrate loads: designation of nitrate vulnerable zones in Northern Ireland, Journal of Hydrology, 304, pp. 316-329.
  • [16] Kleiber, T. (2012). Pollution of the natural environment in intensive cultures under greenhouses, Archives of Environmental Protection, 38, 2, pp. 45-53.
  • [17] Magan, J.J., Gallardo, M., Thompson, R.B. & Lorenzo, P. (2008). Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions, Agricultural Water Management, 95, pp. 1041-1055.
  • [18] Marcelis, L.F.M., Van den Boogaard, R. & Meinen, E. (2000). Control of crop growth and nutrient supply by the combined use of crop models and sensors, in: Proceedings of International Conference on Modeling and Control in Agriculture. Horticulture and Post-harvested Processing, 10-12.07.2000, pp. 351-356, the Netherlands, 2000.
  • [19] Marfá, O. (2000). Recirculation in soilless culture. Basics, in: Recirculation in soilless culture. Summaries of horticulture.Marfá, O. (Ed.). 2nd ed. Horticultural Editions. Reus, Spain 2000. (in Spanish)
  • [20] Massa, D., Incrocci, L., Maggini, R., Carmassi, G., Campiotti, C.A. & Pardossi, A. (2010). Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato, Agricultural Water Management, 97, pp. 971-980.
  • [21] Merica, M.K., Tüzel, I.H., Tüzel, Y. & Oztekin, G.B. (2011). Effects of nutrition systems and irrigation programs on tomato in soilless culture, Agricultural Water Management, 99, pp. 19-25.
  • [22] Min, J., Zhao, X., Shi, W., Xing, G. & Zhu, Z. (2011). Nitrogen Balance and Loss in a Greenhouse Vegetable System in Southeastern China, Pedosphere, 21, 4, pp. 464-472.
  • [23] Mocek A. & Drzymała S. Genesis, analysis and classification of soils, Ed. Univ. Poznań University of Life Science, Poznań 2010. (in Polish)
  • [24] Nowosielski, O. (1998). Principles for the development of fertilization recommendations in horticulture, PWRiL, Warszawa 1998. (in Polish)
  • [25] Pardossi, A., Malorgio, F., Incrocci, L. & Tognoni, F. (2006). Hydroponic technologies for greenhouse crops, in: Crops: Quality, Growth and Biotechnology, Ramdane Dris (Ed.), WFL Publisher, Helsinki, pp. 360-378, Finland 2006.
  • [26] Pardossi, A., Tognoni, F. & Incrocci, L. (2004). Mediterranean Greenhouse Technology, ISHS, Chronica Horticulturae, 44, 2, pp. 1-34.
  • [27] Environmental Protection Law. (2001). Dz.U. 2001 Nr 62 poz. 627. (in Polish)
  • [28] Runia, W.T. & Amsing, J.J. (2001). Disinfection of recirculating water from closed cultivation systems by heat treatment, Acta Horticulturae, 548, pp. 215-222.
  • [29] Savvas, D. (2002). Nutrient solution recycling, in: Hydroponic Productions of Vegetables and Ornamentals, Savvas, D., Passam, H.C. (Eds.). Embryo Publications, pp. 299-343, Greece 2002.
  • [30] Schröder, F.G. & Lieth, J.H. (2002). Irrigation control in hydroponics, in: Hydroponic production of vegetables and ornamentals, Savvas, D. & Passam, H. (ed). Publications Embryo, pp. 265-298, Greece 2002.
  • [31] Sonneveld, C. & Voogt, W. (2009). Plant Nutrition of Greenhouse Crops, Springer, New York 2009.
  • [32] Thompson, R.B., Gallardo, M., Rodríguez, J.S., Sánchez, J.A. & Magán, J.J. (2013). Effect of N uptake concentration on nitrate leaching from tomato grown in free-draining soilless culture under Mediterranean conditions, Scientia Horticulturae, 150, pp. 387-398.
  • [33] Thompson, R.B., Martınez-Gaitan, C., Gallardo, M., Gimenez, C. & Fernandez, M.D. (2007). Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey, Agricultural Water Management, 89, pp. 261-274.
  • [34] Van Os, E.A. (1999). Closed soilless growing systems: a sustainable solution for dutch greenhouse horticulture, Water Science and Technology, 39, 5, pp. 105-112.
  • [35] Yu, H., Li, T. & Zhang, X. (2010). Nutrient budget and soil nutrient status in greenhouse system, Agricultural Sciences in China, 9, 6, pp. 871-879.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56095e47-bdb4-418e-9695-993223a87b2f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.