PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical performances study of curved photovoltaic panel integrated with phase change material

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The temperature rise of photovoltaic’s cells deteriorates its conversion efficiency. The use of a phase change material (PCM ) layer linked to a curved photovoltaic PV panel so-called PV-mirror to control its temperature elevation has been numerically studied. This numerical study was carried out to explore the effect of inner fins length on the thermal and electrical improvement of curved PV panel. So a numerical model of heat transfer with solid-liquid phase change has been developed to solve the Navier-Stokes and energy equations. The predicted results are validated with an available experimental and numerical data. Results shows that the use of fins improve the thermal load distribution presented on the upper front of PV/PCM system and maintained it under 42°C compared with another without fins and enhance the PV cells efficiency by more than 2%.
Rocznik
Strony
1439--1451
Opis fizyczny
Bibliogr. 36 poz., il. kolor., wykr.
Twórcy
  • Department of Mechanical Engineering, National Polytechnic School of Oran, Oran 31000, Algeria
  • Laboratory of Smart Structure, Institute of Science and Technology, Centre University of AinTemouchent, AinTemouchent 46000, Algeria
autor
  • Laboratory of Smart Structure, Institute of Science and Technology, Centre University of AinTemouchent, AinTemouchent 46000, Algeria
autor
  • Department of Mechanical Engineering, National Polytechnic School of Oran, Oran 31000, Algeria
Bibliografia
  • [1] Emery, K.B., Caiyem, J., Dunlavy, Y., Field, D., Kroposki, H., Moriarty, B., Ottoson, T., Rummel, L., Strand, S. T.: Temperature dependence of photovoltaic cells, modules and systems, in Photovoltaic Specialists Conference, Conference Record of the Twenty Fifth IEEE, 1996.
  • [2] Norton, B., Eames, P., Mallick, T., Huang, M., McCormack, S., Mondol, J., Yohanis, Y.: Enhancing the performance of building integrated photovoltaics Solar Energy, 85, 8, 1629-1664, 2011.
  • [3] Benlekkam, M., Nehari, D., Madani, H. I.: Enhancement of the Thermal Regulation Performance of a Curved PV Panel Int. J Renewable Energy Research, 7, 707-714., 2017.
  • [4] Khanna, S., Reddy, K., Mallick, T.K.: Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions, Energy, 133, 887-899, 2017.
  • [5] Hachem, F., Abdulhay, B., Ramadan, M., El Hage, H., El Rab, M., Khaled, M.: Improving the performance of photovoltaic cells using pure and combined phase change materials-Experiments and transient energy balance Renewable Energy, 107, 567-575, 2017.
  • [6] Stritih, U.: Increasing the efficiency of PV panel with the use of PCM Renewable Energy, 97: p. 671-679, 2016.
  • [7] Rok, S., Stritih, U.: Increasing the efficiency of PV panel with the use of PCM, Renewable Energy, 97, 671-679, 2016.
  • [8] Huang, M. J.: The effect of using two PCMs on the thermal regulation performance of BIPV systems, Solar Energy Materials and Solar Cells, 95, 957-963, 2011.
  • [9] Huang, M. J., McCormack, S., Eames, P. C., Norton, B.: The effect of phase change material crystalline segregation on the building integrated photovoltaic system thermal performance, World Renewable Energy Congress, 1338-1343, 2008.
  • [10] Huang, M. J., Eames, P. C., Norton, B., Hewitt, N. J.: Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaic’s, Solar Energy Materials and Solar Cells, 95, 1598-1603, 2011.
  • [11] Huang, M., Eames, P., Norton, B.: Phase change materials for limiting temperature rise in building integrated photovoltaic’s. Solar Energy, 80: p. 1121-1130, 2006.
  • [12] Huang, M., P. Eames, and B. Norton,: Thermal regulation of building-integrated photovoltaic’s using phase change materials, Int. J. heat and mass transfer, 47, 2715-2733, 2004.
  • [13] Huang, M.: Two phase change material with different closed shape fins in building integrated photovoltaic system temperature regulation. in World Renewable Energy Congress-Sweden, Link¨oping University Electronic Press, 2011.
  • [14] Cellura, M., Brano, V. L., Marvuglia, A.: A Photovoltaic panel coupled with a phase changing material heat storage system in hot climates, Conference on Passive and Low Energy Architecture, 2008.
  • [15] Kant, K., Shukla, A., Sharma, A., Biwole, P.: Heat transfer studies of photovoltaic panel coupled with phase change material, Solar Energy, 140, 151-161, 2016.
  • [16] Elarga, H., Goia, F., Zarrella, A., Dal Monte, A., Benini, E.: Thermal and electrical performance of an integrated PV-PCM system in double skin fa¸cades: A numerical study, Solar Energy, 136, 112-124, 2016.
  • [17] Savvakis, N., Tsoutsos, T.: Phase Change Materials in Photovoltaic’s: The Assessment of System Performance in the Present Mediterranean Climate Conditions, Energy Markets and Renewable Energy Sources in South-Eastern Europe, 2016.
  • [18] Holman, Z., Yu, Z. J.: High-efficiency solar power with integrated storage, Solar & Alternative Energy SPIE Newsroom, 2015.
  • [19] Zhengshan, J. Yu., Fisher, K., Wheelwright, B. M., Angel, R., Holman, Z.: PV-mirror: a new concept for tandem solar cells and hybrid solar converters, IEEE Journal of Photovoltaic's, 5, 1791-1799. 2015.
  • [20] Anon, B.: R.d.s., Co. RUBITHERM GmbH.: Hamburg Germany. 2000.
  • [21] Hale, D. V., Hoover, M. J., O'Neil, M. J.: Phase Change Materials Handbook, NASA CR 61363, 1975.
  • [22] Rohsenow, W. M., Hartnett, J. P., Cho, Y. I.: Handbook of Heat Transfer, third ed., New York. 1998.
  • [23] Skoplaki, E., Boudouvis, A., Palyvos, J.: A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting, Solar Energy Materials and Solar Cells, 92, 1393-1402, 2008.
  • [24] Evans, D., Florschuetz, L.: Cost studies on terrestrial photovoltaic power systems with sunlight concentration, Solar Energy, 19, 255-262, 1977.
  • [25] Johns, T., Katz, L., Grey, J.: Application of Solar Technology to Today’s Energy Needs, 1978.
  • [26] Truncellito, N., Sattolo, A.: An analytical method to simulate solar energy collection and storage utilizing a flat plate photovoltaic panel, General Electric Advanced Energy Department, 1979.
  • [27] RETScreen, I., Photovoltaic Project Analysis. 2001.
  • [28] Chow, T.: Performance analysis of photovoltaic-thermal collector by explicit dynamic model, Solar Energy, 75, 143-152, 2003.
  • [29] Patankar, S.: Numerical heat transfer and fluid flow, CRC press, 1980.
  • [30] Benlekkam, M., Nehari, D., Madani, H. I.: Enhancement of the Thermal Regulation Performance of a Curved PV Panel. INT. J. RENEWABLE ENERGY RESEARCH, 7: p. 707-714, 2017.
  • [31] Atkin, P., Farid, M. M.: Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminum fins, Solar Energy, 114, 217-228, 2015.
  • [32] Biwole, P. H., Eclache, P., Kuznik, F.: Phase-change materials to improve solar panel’s performance, Energy and Buildings, 62, 59-67, 2013.
  • [33] Hasan, A., McCormack, S. J., Huang, M. J., Sarwar, J., Norton, B.: Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates, Solar Energy, 115, 264-276, 2015.
  • [34] Ho, C., Tanuwijava, A., Lai, C.-M.: Thermal and electrical performance of a BIPV integrated with a microencapsulated phase change material layer, Energy and Buildings, 50, 331-338, 2012.
  • [35] Nehari, T., Benlekkam, M., Nehari, D.: Effect of the Fins Length for the Passive Cooling of the Photovoltaic Panels. Periodica Polytechnica, Eng. Mech Eng, 60, 89, 2016.
  • [36] Nehari, T., Benlekkam, M., Nehari, D., Youcefi, A.: The Effect of Inclination on the Passive cooling of the solar PV panel by using Phase change Material, Int. J. Renewable Energy Research, 6, 132-139, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56092ccf-586b-4f4d-90f0-c862775a3ba1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.