PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pressure drop and temperature uniformity during flow boiling of refrigerant R245fa in microchannels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cooling computer processors (CPUs) requires dissipating heat from small heat transfer areas. This results in high heat flux densities to be rejected from the microprocessor. Flow boiling in microchannels receives much attention as a potential solution for CPU cooling. It is characterized by high heat transfer coefficients and requires less working fluid inventory than air-based solutions. However, large pressure drop occurs during phase transition. Moreover, CPU cooling system should provide wall temperature uniformity of the cooled component. Heat transfer coefficient, pressure drop and microprocessor wall temperature depend on microchannel geometry, thermophysical properties of refrigerant, and saturation temperature at which the process is held. This paper focuses on studying pressure drop and temperature uniformity of 40 X 40 mm microchannel evaporator with R245fa as a working fluid. The analysed heat flux density is 80 kW/m2 and the vapor quality change along the heat exchanger is 0.2. The study covers saturation temperatures ranging from 30 to 70°С and microchannel diameters varying between 0.35 and 2 mm. Results of the analysis show that the heat transfer coefficient and wall temperature uniformity increase with increasing saturation temperature and decreasing hydraulic diameter. The maximum and minimum observed non-uniformities were 2.58 and 0.69 K, respectively. Decreasing hydraulic diameter increases pressure losses in the micro-evaporator. The observed pressure drop ranged from 38 to 3753 Pa. Saturation temperature has negligible impact on pressure drop.
Słowa kluczowe
Rocznik
Tom
Strony
1--12
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
  • Technical University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Thermodynamics, Theory of Machines and Thermal Systems
  • Technical University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Thermodynamics, Theory of Machines and Thermal Systems
  • Technical University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Thermodynamics, Theory of Machines and Thermal Systems
Bibliografia
  • [1] Intel ® Core™ Í7-900 Desktop Processor Extreme Edition Series and Intel® Core™ Í7-900 Desktop Processor Series, Datasheet, Vol 1, Intel, February 2010.
  • [2] Smakulski P., Pietrowicz S., A review of the capabilities of high heat flux removal by porous materials, microchannels and spray cooling techniques, Applied Thermal Engineering 104, 636-646, 2016.
  • [3] Kew P.A., Cornwell K., Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels, Applied Thermal Engineering 17, 705-715, 1997.
  • [4] Szczukiewicz S., Borhani N., Thome J.R., Two-phase flow operational maps for multi-microchannel evaporators, Int. J. Heat and Fluid Flow 42, 176-189, 2013.
  • [5] Saenen T., Modeling a two-phase microchannel electronics cooling system (doctoral thesis), Katholieke Universiteit Leuven - Faculty of Engineering, Belgium, 2013.
  • [6] Agostini B., et al., High heat flux flow boiling in silicon multi-microchannels - Part II: Heat transfer characteristics of refrigerant R245fa, Int. J. Heat and Mass Transfer 51, 5415-5425, 2008.
  • [7] Bertsch S.S., Groll E.A., Garimella S.V., Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels, Int. J. Multiphase Flow 35, 142-154, 2009.
  • [8] Ong C.L., Thome J.R., Flow boiling heat transfer of R134a, R236fa and R245fa in a horizontal 1.030 mm circular channel, Experimental Thermal and Fluid Science 33, 651-663, 2009.
  • [9] Bortolin S., Del Col D., Rossetto L., Flow Boiling of R245fa in a Single Circular Microchannel, Heat Transfer Engineering 32, 1160-1172, 2011.
  • [10] Charnay R., Bonjour J., Revellin R., Flow boiling characteristics of R-245fa in a minichannel at medium saturation temperatures, Experimental Thermal and Fluid Science 59, 184-194, 2014.
  • [11] Charnay R., Bonjour J., Revellin R., Flow boiling heat transfer in minichannels at high saturation temperatures: Part I - Experimental investigation and analysis of the heat transfer mechanisms, International Journal of Heat and Mass Transfer 87, 636-6524, 2015.
  • [12] Thome J.R., Dupont V., Jacobi A.M., Heat transfer model for evaporation in microchannels. Part I: presentation of the model, International Journal of Heat and Mass Transfer 47, 3375-3385, 2004.
  • [13] Bertsch S.S., Groll E.A., Garimella S.V., A composite heat transfer correlation for saturated flow boiling in small channels, International Journal of Heat and Mass Transfer 52, 2110-2118, 2009.
  • [14] Hausen H., Darstellung des Wärmeüberganges in Rohren durch verallgemeinerte Potenzbeziehungen, Z. VDI Beiheft Verfahrenstechnik 4, 91-102, 1943.
  • [15] Kim SM., Issam Mudawar I., Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/microchannel flows, Int. J. Heat and Mass Transfer 77, 74-97, 2014.
  • [16] Bell I.H., Wronski J., Quoilin S., Lemort V., Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp, Industrial & Engineering Chemistry Research 53(6), 2498-2508, 2014.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5607e1b5-60b1-4f63-b2a4-d4fec76d96ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.