Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Microalgae are microorganisms that in recent years have become protagonists in research because they are potential candidates for use in obtaining compounds of interest such as lipids, which may be transformed into bioenergy compounds like biodiesel. Nannochloropsis oculata is a marine microalga whose main characteristic is its high lipid content. In this work, the effect of salinity intensity on the growth of N. oculata was investigated in the photobioreactor batch cultures incubated with a salinity ranging from 20 to 40 ppt to analyze its growth profile and chlorophyll pigment to obtain dry biomass and biofuel produced as lipid extraction. The results indicated specific growth rate maximum values of 0.343 day-1 , obtained at 35 ppt salinity. Chlorophyll pigment increases with salt concentration between 25 and 35 ppt. The total lipid extracted increases considerably at moderate salinities condition (25–35) ppt, the maximum dry biomass harvest and productivity, accomplished after the microalgae cultivation salinity at 30 ppt was 0.623 g/l and 62.3 mg/l respectively. Same applies to the maximum total lipid content and productivity, which was 221 mg/l and 22.1 mg/l. day, respectively. These findings show that a variety of salinities support optimal biomass yield and biochemical composition in N. oculata cultivation. Salinity monitoring is crucial for successful cultivation. Furthermore, the advantages of N. oculata microalga, including its large cell size (facilitating harvest and grazer tolerance) and its salinity resilience, should be considered.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
46--54
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
autor
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
autor
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
autor
- Environmental Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
Bibliografia
- 1. Amjith, L.R., Bavanish, B. 2022. A review on biomass and wind as renewable energy for sustainable environment. Chemosphere, 293, 133579. https:// doi.org/10.1016/j.chemosphere.2022.133579
- 2. Ammar, S.H., Khadim, H.J., Mohamed, A.I. 2018. Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production. Environmental Technology & Innovation, 10, 132–142. https://doi.org/10.1016/j.eti.2018.02.002
- 3. Banik, S., Dutta, D. 2023. Membrane proteins in plant salinity stress perception, sensing, and response. The Journal of Membrane Biology, 256(2), 109-124. https://doi.org/10.1007/s00232-023-00279-9
- 4. Barot, S. 2022. Biomass and bioenergy: resources, conversion and application. Renewable Energy for Sustainable Growth Assessment, 243–262. https://doi.org/10.1002/9781119785460.ch9
- 5. Chaisutyakorn, P., Praiboon, J., Kaewsuralikhit, C. 2018. The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. Journal of Applied Phycology, 30, 37–45. https://doi.org/10.1007/s10811-017-1186-3
- 6. Chaisutyakorn, P., Praiboon, J., Kaewsuralikhit, C. 2018. The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. Journal of Applied Phycology, 30, 37–45. https://doi.org/10.1007/s10811-017-1186-3
- 7. Chanana, I., Kaur, P., Kumar, L., Kumar, P., Kulshreshtha, S. 2023. Advancements in microalgal biorefinery technologies and their economic analysis and positioning in energy resource market. Fermentation, 9(3), 202. https://doi.org/10.3390/fermentation9030202
- 8. Cihan, Ö. 2021. Experimental and numerical investigation of the effect of fig seed oil methyl ester biodiesel blends on combustion characteristics and performance in a diesel engine. Energy Reports, 7, 5846–5856. https://doi.org/10.1016/j.egyr.2021.08.180
- 9. Duan, X., Ren, G.Y., Liu, L.L., Zhu, W.X. 2012. Salt-induced osmotic stress for lipid overproduction in batch culture of Chlorella vulgaris. African Journal of Biotechnology, 11(27), 7072–7078. https://doi.org/10.5897/AJB11.3670
- 10. Egesa, D., Plucinski, P. 2024. Efficient extraction of lipids from magnetically separated microalgae using ionic liquids and their transesterification to biodiesel. Biomass Conversion and Biorefinery, 14(1), 419 434. https://doi.org/10.1007/s13399-022-02377-5
- 11. Elloumi, W., Jebali, A., Maalej, A., Chamkha, M., Sayadi, S. 2020. Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp. Biomolecules, 10(11), 1515. https://doi.org/10.3390/biom10111515
- 12. Francavilla, M., Kamaterou, P., Intini, S., Monteleone, M., Zabaniotou, A. 2015. Cascading microalgae biorefinery: fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue. Algal Research, 11, 184-193. https://doi.org/10.1016/j.algal.2015.06.017
- 13. Gouveia, L., Oliveira, A.C. 2009. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36(2), 269–274. https://doi.org/10.1007/s10295-008-0495-6
- 14. Griffiths, M.J., Harrison, S.T. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21, 493–507. https://doi.org/10.1007/s10811-008-9392-7
- 15. Ishika, T., Bahri, P.A., Laird, D.W., Moheimani, N.R. 2018. The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. Journal of Applied Phycology, 30, 1453–1464. https://doi.org/10.1007/s10811-017-1377-y
- 16. Javed, M.U., Mukhtar, H., Hayat, M.T., Rashid, U., Mumtaz, M.W., Ngamcharussrivichai, C. 2022. Sustainable processing of algal biomass for a comprehensive biorefinery. Journal of Biotechnology, 352, 47–58. https://doi.org/10.1016/j. jbiotec.2022.05.009
- 17. Kawaroe, M., Hwangbo, J., Augustine, D., Putra, H.A. 2015. Comparison of density, specific growth rate, biomass weight, and doubling time of microalgae Nannochloropsis sp. cultivated in Open Raceway Pond and Photobioreactor. Aquaculture, Aquarium, Conservation & Legislation, 8(5), 740–750. http://www.bioflux.com.ro/docs/2015.740-750.pdf
- 18. Kiehbadroudinezhad, M., Merabet, A., Hosseinzadeh-Bandbafha, H. 2024. Health impacts of greenhouse gases emissions on humans and the environment. In Advances and Technology Development in Greenhouse Gases: Emission, Capture and Conversion 265–291. Elsevier. https://doi.org/10.1016/B978-0-443-19231-9.00011-9
- 19. Krishnan, V., Uemura, Y., Thanh, N.T., Khalid, N.A., Osman, N., Mansor, N. 2015, May. Three types of Marine microalgae and Nannocholoropsis oculata cultivation for potential source of biomass production. In Journal of Physics: Conference Series 622(1), 012034. IOP Publishing. https://doi.org/10.1088/1742-6596/622/1/012034
- 20. Ma, Y., Wang, Z., Yu, C., Yin, Y., Zhou, G. 2014. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresource Technology, 167, 503–509. https://doi.org/10.1016/j.biortech.2014.06.047
- 21. Martínez-Roldán, A.J., Perales-Vela, H.V., Cañizares-Villanueva, R.O., Torzillo, G. 2014. Physiological response of Nannochloropsis sp. to saline stress in laboratory batch cultures. Journal of Applied Phycology, 26, 115–121. https://doi.org/10.1007/s10811-013-0060-1
- 22. Navarro-Peraza, R.S., Soto-León, S., Contreras Andrade, I., Piña-Valdez, P., Viveros-García, T., Cuevas-Rodriguez, E.O., Nieves-Soto, M. 2017. Effects of temperature and nitrogen limitation on growth kinetics, proximate composition and fatty acid profile of Nannochloropsis sp. Revista Mexicana de Ingeniería Química, 16(2), 359–369. https://www.redalyc.org/pdf/620/62052087003.pdf
- 23. Peng, X., Meng, F., Wang, Y., Yi, X., Cui, H. 2020. Effect of pH, temperature, and CO2 concentration on growth and lipid accumulation of Nannochloropsis sp. MASCC 11. Journal of Ocean University of China, 19, 1183–1192. https://doi.org/10.1007/s11802-020-4302-y
- 24. Pugkaew, W., Meetam, M., Yokthongwattana, K., Leeratsuwan, N., Pokethitiyook, P. 2019. Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica. Journal of Applied Phycology, 31, 969–979. https://doi.org/10.1007/s10811-018-1619-7
- 25. Sabzi, S., Mehrgan, M.S., Islami, H.R., Shekarabi, S.P.H. 2018. Changes in biochemical composition and fatty acid accumulation of Nannochloropsis oculata in response to different iron concentrations. Biofuels. https://doi.org/10.1080/17597269.2018.1489672
- 26. Şirin, S., Sillanpää, M. 2015. Cultivating and harvesting of marine alga Nannochloropsis oculata in local municipal wastewater for biodiesel. Bioresource Technology, 191, 79–87. https://doi.org/10.1016/j.biortech.2015.04.094
- 27. Song, X., Liu, B.F., Kong, F., Ren, N.Q., Ren, H.Y. 2022. Overview on stress-induced strategies for enhanced microalgae lipid production: Application, mechanisms and challenges. Resources, Con servation and Recycling, 183, 106355. https://doi.org/10.1016/j.resconrec.2022.106355
- 28. Srivastava, R.K., Shetti, N.P., Reddy, K.R., Kwon, E.E., Nadagouda, M.N., Aminabhavi, T.M. 2021. Biomass utilization and production of biofuels from carbon neutral materials. Environmental Pollution, 276, 116731. https://doi.org/10.1016/j.envpol.2021.116731
- 29. Wang, X., Chen, Y.P., Guo, J.S., Fang, F., Yan, P. 2024. Flocculation-enhanced photobiological hydrogen production by microalgae: Flocculant composition, hydrogenase activity and response mechanism. Chemical Engineering Journal, 485, 150065. https://doi.org/10.1016/j.cej.2024.150065
- 30. Wei, L., Huang, X. 2017. Long-duration effect of multi-factor stresses on the cellular biochemistry, oil-yielding performance and morphology of Nan nochloropsis oculata. PLoS One, 12(3), e0174646. https://doi.org/10.1371/journal.pone.0174646
- 31. Yang, Z., Chen, J., Tang, B., Lu, Y., Ho, S.H., Wang, Y.,... Shen, L. 2024. Metabolic interpretation of NaCl stress-induced lipid accumulation in microalgae for promising biodiesel production with saline wastewater. Chemical Engineering Science, 284, 119447. https://doi.org/10.1016/j.ces.2023.119447
- 32. Zhang, J., Tsai, W.Y., Hsu, C.H., Peng, C.A. 2022. Biodiesel production from Nannochloropsis oculata cultured at stressful carbon dioxide concentration and light illumination. Biofuels, 13(4), 527–535. https://doi.org/10.1080/17597269.2020.1787699
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56073652-f495-404b-bad8-34a881f0b687
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.