Identyfikatory
Warianty tytułu
Konferencja
III International Conference „Radon in the Environment” (3 ; 27-31 May 2019 ; Krakow, Poland)
Języki publikacji
Abstrakty
More than 40 years ago, Public Health England (PHE and its predecessor organizations) established a radon laboratory to deliver services for radon measurements in homes and workplaces in the UK [1]. A key factor in developing these services was to set up stringent quality control and assurance protocols to enable the delivery of reliable and accurate results. There are nearly 40 checkpoints in the process, most exceeding 94% pass rate, starting from a quality check of poly-allyl diglycol carbonate (PADC) polymer and ending with a result modified by seasonal and occupancy correction factors. This work aims to show how to obtain the reliable results of radon measurements.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
105--110
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
- Public Health England, Centre for Radiation Chemical and Environmental Hazards Chilton, Oxfordshire OX11 0RQ, United Kingdom
Bibliografia
- 1. National Radiological Protection Board. (1996). Etched-track detectors for area monitoring of radon. London: HMSO. (Report NRPB-R283).
- 2. Wasikiewicz, J. M. (2018). Impact of environmental factors on PADC radon detector sensitivity during long term storage. Radiat. Phys. Chem., 142, 141–145. DOI: 10.1016/j.radphyschem.2017.01.002.
- 3. Wasikiewicz, J. M. (2019). Comparison of different PADC materials for application in radon exposure assessment. Radiat. Meas., 122, 40–44. DOI: 10.1016/j.radmeas.2019.01.010.
- 4. Miles, J., Ibrahimi, F., & Birch, K. (2009). Moistureresistant passive radon detectors. J. Radiol. Prot.,29(2), 269–271. DOI: 10.1088/0952-4746/29/2/N01.
- 5. Hermsdorf, D., Hunger, M., Starke, S., & Weickertet,F. (2007). Measurement of bulk etch rates for polyallyl-diglycol carbonate (PADC) and cellulose nitrate in a broad range of concentration and temperature of NaOH etching solution. Radiat. Meas., 42(1), 1–7. DOI: 10.1016/j.radmeas.2006.06.009.
- 6. Steele, J. D., Bhakta, J. R., Ranner, R. J., & Bartlett, D. T. (1999). Development of a reader for track etch detectors based on a commercially available slide scanner. Radiat. Meas., 31(1/6), 179–184. DOI: 10.1016/S1350-4487(99)00082-7.
- 7. National Radiological Protection Board. (1988). Natural radiation exposure in UK dwellings. London: HMSO. (Report NRPB-R190).
- 8. Miles, J. C. H., & Algar, R. A. (1988). Variations in radon-222 concentrations. J. Radiol. Prot., 8(2), 103–106. DOI: 10.1088/0952-4746/8/2/005.
- 9. Miles, J. C. H. (2001). Temporal variation of radon levels in houses and implications for radon measurement strategies. Radiat. Prot. Dosim., 93(4), 369–375. DOI: 10.1093/oxfordjournals.rpd.a006449.
- 10. Daraktchieva, Z. (2017). New correction factors based on seasonal variability of outdoor temperature for estimating annual radon concentrations in UK. Radiat. Prot. Dosim., 175(1), 65–74. https://doi.org/10.1093/rpd/ncw270.
- 11. The Secretary of State. (2018). The ionising radiation. (Basic Safety Standards). (Miscellaneous Provisions) Regulations 2018, No. 482. Available from http://www.legislation.gov.uk/uksi/2018/482/made.
- 12. Public Health England. (2018). Radon exposure: occupancy factors for UK homes. London: Public Health England. (PHE Gateway: 2018672).
- 13. Public Health England. (2019). Results of the 2017 PHE intercomparison of passive radon detectors. London: Public Health England. (PHE-CRCE-055).
- 14. Bundesamt für Strahlenschutz. (2017). Messgeräte zur Bestimmung der Radon-222-Aktivitätskonzentration oder der Radon-222-Exposition Vergleichsprüfung 20 17. Salzgitter: BfS.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5607165f-1106-46ff-8909-60a571acde3a