PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recycling of selected fraction of municipal solid waste as artificial soil substrate in support of the circular economy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Regions with warm climate are poor in organic matter or have a deficit of soil. The purpose of the work was to select the optimal mix from biodegradable wastes such as cardboard (Cb), natural textiles (Tx) newspaper (Np), colored newspaper (Cp), and office paper (Op) for creating artificial soil by combining these materials with compost and sand. To select the optimum mix, 15 samples were taken (3 from each type of waste in the following proportions: 25%, 50% and 75% ). The optimum mix was analyzed for grass germination rate and root development. Tests were performed in the laboratory with conditions similar to those of regions with warm climate and soil deficiency in a specially designed testing spot (bioterm). The effects of particular mixes on plant germination rate and growth were measured. Out of all mixes, the textile compositions Tx50 and Tx25 supported best the plant propagation. During the whole experimental process, the grass showed various growth tendencies. The best results for grass height were observed for mixes with textiles and colored newspaper. Based on this data and subsequent laboratory research, the best substrate composition was selected. For the whole period of the tests, germination rate in the pot with the mix was higher than the germination rate in the control sample with compost. Considering the experimental conditions of this research, the tested substrates can be used to aid in plant propagation, especially in regions with warm climate and soil deficiencies, and for restoration of damaged land areas.
Rocznik
Strony
68--77
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Gliwice, Poland
  •  College of Life Sciences, Kuwait University, Kuwait
autor
Bibliografia
  • 1. Achiba, W., Gabteni, N., Lakhdar, A., Laing, G.D., Verloo, M., Jedidi, N. & Gallali, T. (2009). Effects of 5-year application of municipal solid waste compost on the distribution and mobility of heavy metals in a Tunisian calcareous soil. Agriculture, Ecosystems and Environment. 130, pp. 156-163. DOI:10.1016/j.agee.2009.01.001
  • 2. Alam, A., Nawaz Chaudhry, M.N., Ahmad, S.R., Batool, A., Mahmood, A. & Al-Ghamdi, H. (2021). Application of EASEWASTE model for assessing environmental impacts from solid waste landfilling. Archives of Environmental Protection. 47, No 4, pp. 84-92. DOI:10.24425/aep.2021.139504
  • 3. Asdrubali, F., Pisello, A.L. , Alessandro, F.D., Bianchi, F., Cornicchia, M. & Fabiani, C. (2015). Innovative Cardboard Based Panels with Recycled Materials from the Packaging Industry: Thermal and Acoustic Performance Analysis. Energy Procedia. 78, pp. 321-326. DOI:10.1016/j.egypro.2015.11.652
  • 4. Aspiras, F.F. & Manalo, J.R.I. (1995). Utilization of textile waste cuttings as building material. Journal of Materials Processing Technology. 48, pp. 379-384. DOI:10.1016/0924-0136(94)01672-N
  • 5. Awwad, E., Mabsout, M., Hamad, B., Farran, M. T. & Khatib, H. (2012). Studies on fiber-reinforced concrete using industrial hemp fibers. Construction and Building Materials. 35, pp. 710-717. DOI:10.1016/j.conbuildmat.2012.04.119
  • 6. Avató, J.L. & Mannheim, V. (2022). Life Cycle Assessment Model of a Catering Product: Comparing Environmental Impacts for Different End-of-Life Scenarios. Energies 15 (15): 5423. DOI:10.3390/en15155423
  • 7. Ayrilmis, N., Candan, Z. & Hiziroglu, S. (2008). Physical and mechanical properties of cardboard panels made from used beverage carton with veneer overlay. Materials & Design. 29, pp. 1897-1903. DOI:10.1016/j.matdes.2008.04.030.
  • 8. Bustamante, M.A., Said-Pullicino, D., Agullóa, E., Andreua, J., Paredesa, C. & Morala, R. (2011). Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: Effects on the characteristics of a calcareous sandy-loam soil. Agriculture, Ecosystems and Environment. 140, pp. 80-87. DOI:10.1016/j.agee.2010.11.014
  • 9. Çay, A, Yanık, J, Akduman, Ç, Duman, G. & Ertaş, H. (2020). Application of textile waste derived biochars onto cotton fabric for improved performance and functional properties. Journal of Cleaner Production. 251, Article no. 119664. DOI:10.1016/j.jclepro.2019.119664
  • 10. Espinosa, E., Rol, F., Bras, J. & Rodríguez, A. (2019). Production of lignocellulose nanofibers from wheat straw by different fibrillation methods. Comparison of its viability in cardboard recycling process. Journal of Cleaner Production. 239, Article no. 118083. DOI:10.1016/j.jclepro.2019.118083
  • 11. Directive (EU) 2018/851 of the European Parliament and of the Council of 30 May 2018 amending Directive 2008/98/EC on waste.
  • 12. Hargreaves, J.C., Adl, M.S. & Warman, P.R.(2008). A review of the use of composted municipal solid waste in agriculture. Agriculture, Ecosystems and Environment. 123, pp. 1-14. DOI:10.1016/j.agee.2007.07.004
  • 13. Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M. & Sixta, H. (2019). Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Management. 97, pp. 88-96. DOI:10.1016/j.wasman.2019.07.040
  • 14. Homem, N.C. & Pessoa Amorim M.T. (2020). Synthesis of cellulose acetate using as raw material textile wastes. Materials Today: Proceedings. 31, pp. S315-S317. DOI:10.1016/j.matpr.2020.01.494
  • 15. Kymäläinen, H.R. & Sjöberg, A.M. (2008). Flax and hemp fibres as raw materials for thermal insulations. Building and Environment. 43, pp. 1261-1269. DOI:10.1016/j.buildenv.2007.03.006
  • 16. Lederer, J., Karungi, J. & Ogwang, F. (2015). The potential of wastes to improve nutrient levels in agricultural soils: A material flow analysis case study from Busia District, Uganda. Agriculture, Ecosystems and Environment. 207, pp. 26-39. DOI:10.1016/j.agee.2015.03.024
  • 17. Lei, W., Zhou, X., Fang, C., Yonghu,Song, Y.L., Wang, C. & Huang, Z. (2019). New approach to recycle office waste paper: Reinforcement for polyurethane with nano cellulose crystals extracted from waste paper. Waste Management. 95, pp. 59-69. DOI:10.1016/j.wasman.2019.06.003
  • 18. Mannheim V (2022). Perspective: Comparison of end-of-life scenarios of municipal solid waste from viewpoint of life cycle assessment. Frontiers in Built Environment. 8:991589. DOI: 10.3389/fbuil.2022.991589
  • 19. Ordinance of the Minister of Agriculture and Rural Development on the realization of some regulations on the manures and fertilisation. Journal of Laws. no 119, item 765, June 18, 2008 (in Polish)
  • 20. Ordinance of the Minister of Environment on the conditions for the introduction of waste to waters or soil and substances particularly hazardous for the water environment, Journal of Acts 2014, item 1800, December 16 (in Polish)
  • 21. Ordinance of the Minister of Environment on the evaluation of contamination of the Earth’s surface. Journal of Laws dated 2016 item 1395, September 1, 2016 (in polish)
  • 22. Pelegrini, M., Gohr Pinheiro, I. & Valle, J. A. B. (2010). Plates made with solid waste from the recycled paper industry. Waste Management. 30, pp. 268-273. DOI:10.1016/j.wasman.2009.08.008
  • 23. Rajput, D., Bhagade, S. S., Raut, S. P., Ralegaonkar, R. V. & Sachin Mandavgane, A. (2012). Reuse of cotton and recycle paper mill waste as building material. Construction and Building Materials. 34, pp. 470-475. DOI:10.1016/j.conbuildmat.2012.02.035
  • 24. Si, Y. & Guo, Z. (2016). Eco-friendly functionalized superhydrophobic recycled paper with enhanced flame-retardancy. Journal of Colloid and Interface Science. 477, pp. 74-82. DOI:10.1016/j.jcis.2016.05.044
  • 25. Singh, A. & Raj, P. (2018). Segregation of waste at source reduces the environmental hazards of municipal solid waste in Patna, India. Archives of Environmental Protection. 44, No 4, pp. 96-110. DOI 10.24425/aep.2018.122306
  • 26. Tatariants, S.Y.M., Tichonovas, M., Sarwar, Z., Jonuškienė, I. & Kliucininkas, L. (2019). A new strategy for using textile waste as a sustainable source of recovered cotton. Resources, Conservation and Recycling.145, pp. 359-369. DOI:10.1016/j.resconrec.2019.02.031
  • 27. Zhou X.Y., Zheng, F., Li, H. & Lu C.L. (2010). An environment-friendly thermal insulation material from cotton stalk fibers. Energy and Buildings. 42, pp. 1070-1074. DOI:10.1016/j.enbuild.2010.01.020
Uwagi
PL
Opracowane ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-56011717-6f8e-45f1-825e-92f9564018b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.