PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plant-derived rhamnogalacturonan-I’s modulate proinflammatory cytokine gene expression in neutrophils stimulated by E. coli LPS and P. gingivalis bacteria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titanium dental implants often induce the foreign body immune response. The duration of the inflammatory process determines the initial stability and biocompatibility of the implant. The challenge for bone tissue engineering is to develop implant biocompatible and bioactive surface coatings that regulate the inflammatory response and enhance osseointegration. Pectins, plant-derived polysaccharides, have been shown to be potential candidates for surface coating due to their possible roles in improving osseointegration and bone healing. The aim of this study was to evaluate in vitro the effect of plant-derived pectin rhamnogalacturonan-I (RG-I) nanocoating on pro- and anti-inflammatory human polymorphonuclear leucocytes (PMN) responses to E. coli LPS or P. gingivalis bacteria. In this study unmodified RG-I and structurally modified RG-I from potato were examined. All in vitro studies were performed on tissue culture polystyrene surfaces (TCPS) or titanium (Ti) discs coated with unmodified and modified RG-Is. Changes in PMN gene expression occurred on both surfaces. The presence of RG-Is down-regulated proinflammatory genes, IL1B, IL8, TNFA. Our results clearly showed that pectin RG-I nanocoating decreased the level of proinflammatory genes expression in stimulated PMN and may therefore be considered as a potential candidate for modulation of the inflammatory response elicited by insertion of implants into living tissue.
Słowa kluczowe
Rocznik
Strony
2--7
Opis fizyczny
Bibliogr. 43 poz., rys., tab., zdj.
Twórcy
autor
  • Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
  • Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
autor
  • Faculty of Health & Life Sciences, University of Coventry, 20 Whitefriars Street, Coventry CV1 2DS, United Kingdom
autor
  • Birmingham Dental School and Hospital, University of Birmingham, 5 Mill Poll Way, Edgbaston, Birmingham B5 7EG, United Kingdom
autor
  • Birmingham Dental School and Hospital, University of Birmingham, 5 Mill Poll Way, Edgbaston, Birmingham B5 7EG, United Kingdom
Bibliografia
  • [1] Anderson J.M., Rodriguez A., Chang D.T.: Foreign body reaction to biomaterials. Seminars in immunology 20(2) (2008) 86-100.
  • [2] Jhunjhunwala S., Aresta-DaSilva S., Tang K., Alvarez D., Webber M.J., et al.: Neutrophil responses to sterile implant materials. PloS one 10(9) (2015) e0137550.
  • [3] Vitkov L., Krautgartner W-D., Obermayer A., Stoiber W., Hannig M., et al.: The initial inflammatory response to bioactive implants is characterized by NETosis. PloS one 10(3) (2015) e0121359.
  • [4] Zhou J., Tsai Y-T., Weng H., Tang E.N., Nair A., et al.: Real-time detection of implant-associated neutrophil responses using a formyl peptide receptor-targeting NIR nanoprobe. International journal of nanomedicine 2012(7) (2012) 2057-2068.
  • [5] Regan M., Barbul A.: The cellular biology of wound healing. Wound Healing 1 (1994) 3-17.
  • [6] Lee S.J., Atala A., Yoo J.J.: In Situ Tissue Regeneration: Host Cell Recruitment and Biomaterial Design: Academic Press (2016) 40-44.
  • [7] Ling M.R., Chapple I., Matthews J.: Peripheral blood neutrophil cytokine hyper-reactivity in chronic periodontitis. Innate immunity 21(7) (2015) 714-725.
  • [8] Koziel K., Potempa J., Mydel P.: The Link Between Periodontal Disease and Rheumatoid Arthritis: An Updated Current rheumatology reports 16(3) (2014) 408.
  • [9] Tajima S., Chu J.S.F., Komvopoulos K.: Differential regulation of endothelial cell adhesion, spreading, and cytoskeleton on low- -density polyethylene by nanotopography and surface chemistry modification induced by argon plasma treatment. Journal of Biomedical Materials Research Part A 84(3) (2008) 828-836.
  • [10] Wright H.L., Moots R.J., Bucknall R.C., Edwards S.W.: Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49(9) (2010) 1618-1631.
  • [11] Wilgus T.A., Roy S., McDaniel J.C.: Neutrophils and wound repair: positive actions and negative reactions. Advances in wound care 2(7) (2013) 379-388.
  • [12] Mountziaris P.M., Mikos A.G.: Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Engineering Part B: Reviews 14(2) (2008) 179-186.
  • [13] Gurzawska K., Dirscherl K., Yihua Y., Byg I., Bodil J., et al.: Characterization of pectin nanocoatings at polystyrene and titanium surfaces. Journal of Surface Engineered Materials and Advanced Technology 3(04) (2013) 20.
  • [14] Gurzawska K., Svava R., Jørgensen N.R., Gotfredsen K.: Nanocoating of titanium implant surfaces with organic molecules. Polysaccharides including glycosaminoglycans. Journal of biomedical nanotechnology 8(6) (2012) 1012-1024.
  • [15] Gurzawska K., Svava R., Syberg S., Yihua Y., Haugshøj K.B., et al.: Effect of nanocoating with rhamnogalacturonan-I on surface properties and osteoblasts response. Journal of Biomedical Materials Research Part A 100(3) (2012) 654-664.
  • [16] Gurzawska K., Svava R., Yihua Y., Haugshøj K.B., Dirscherl K., et al.: Osteoblastic response to pectin nanocoating on titanium surfaces. Materials Science and Engineering: C 43 (2014) 117-125.
  • [17] Bussy C., Verhoef R., Haeger A., Morra M., Duval J.L., et al.: Modulating in vitro bone cell and macrophage behavior by immobilized enzymatically tailored pectins. Journal of Biomedical Materials Research Part A 86(3) (2008) 597-606.
  • [18] Kokkonen H., Cassinelli C., Verhoef R., Morra M., Schols H., et al.: Differentiation of osteoblasts on pectin-coated titanium. Biomacromolecules 9(9) (2008) 2369-2376.
  • [19] Kokkonen H., Verhoef R., Kauppinen K., Muhonen V., Jørgensen B., et al.: Affecting osteoblastic responses with in vivo engineered potato pectin fragments. Journal of Biomedical Materials Research Part A 100(1) (2012) 111-119.
  • [20] Morra M.: Biochemical modification of titanium surfaces: peptides and ECM proteins. Eur Cell Mater 12(1) (2006) 15.
  • [21] Morra M., Cassinelli C., Cascardo G., Nagel M-D., Della Volpe C., et al.: Effects on interfacial properties and cell adhesion of surface modification by pectic hairy regions. Biomacromolecules 5(6) (2004) 2094-2104.
  • [22] Nagel M-D., Verhoef R., Schols H., Morra M., Knox J.P., et al.: Enzymatically-tailored pectins differentially influence the morphology, adhesion, cell cycle progression and survival of fibroblasts. Biochimica et Biophysica Acta (BBA)-General Subjects 1780(7) (2008) 995-1003.
  • [23] Folkert J., Meresta A., Gaber T., Miksch K., Buttgereit F., et al.: Nanocoating with plant-derived pectins activates osteoblast response in vitro. International Journal of Nanomedicine 12 (2017) 239.
  • [24] Svava R., Gurzawska K., Yihau Y., Haugshøj K.B., Dirscherl K., et al.: The structurally effect of surface coated rhamnogalacturonan I on response of the osteoblast-like cell line SaOS-2. Journal of Biomedical Materials Research Part A 102(6) (2014) 1961-1971.
  • [25] Markov P., Popov S., Nikitina I., Ovodova R., Ovodov Y.S.: Anti- -inflammatory activity of pectins and their galacturonan backbone. Russian Journal of Bioorganic Chemistry 37(7) (2011) 817-821.
  • [26] Popov S., Ovodova R., Popova G.Y., Nikitina I., Ovodov Y.S.: Adhesion of human neutrophils to fibronectin is inhibited by comaruman, pectin of marsh cinquefoil Comarum palustre L., and by its fragments. Biochemistry (Moscow) 70(1) (2005) 108-112.
  • [27] Popov S., Ovodova R., Popova G.Y., Nikitina I., Ovodov Y.S.: Inhibition of neutrophil adhesion by pectic galacturonans. Russian Journal of Bioorganic Chemistry 33(1) (2007) 175-180.
  • [28] Popov S., Popova G.Y., Ovodova R., Ovodov Y.S.: Antiinflammatory activity of the pectic polysaccharide from Comarum palustre. Fitoterapia 76(3) (2005) 281-287.
  • [29] Gallet M., Vayssade M., Morra M., Verhoef R., Perrone S., et al.: Inhibition of LPS-induced proinflammatory responses of J774. 2 macrophages by immobilized enzymatically tailored pectins. Acta biomaterialia 5(7) (2009) 2618-2622.
  • [30] Meresta A., Folkert J., Gaber T., Miksch K., Buttgereit F., et al.: Plant-derived pectin nanocoatings to prevent inflammatory cellular response of osteoblasts following Porphyromonas gingivalis infection. International Journal of Nanomedicine 12 (2017) 433.
  • [31] Andrukhov O., Ertlschweiger S., Moritz A., Bantleon H.P., Rausch-Fan X.: Different effects of P. gingivalis LPS and E. coli LPS on the expression of interleukin-6 in human gingival fibroblasts. Acta Odontologica Scandinavica 72(5) (2014) 337-345.
  • [32] Maekawa T., Krauss J.L., Abe T., Jotwani R., Triantafilou M., et al.: Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell host & microbe 15(6) (2014) 768-778.
  • [33] Matthews J., Wright H., Roberts A., Cooper P., Chapple I.: Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clinical & Experimental Immunology 147(2) (2007) 255-264.
  • [34] MacKinnon A.C., Farnworth S.L., Hodkinson P.S., Henderson N.C., Atkinson K.M., et al.: Regulation of alternative macrophage activation by galectin-3. The Journal of Immunology 180(4) (2008) 2650-2658.
  • [35] Hsu D.K., Yang R.Y., Pan Z., Yu L., Salomon D.R., et al.: Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. The American journal of pathology 156(3) (2000) 1073-1083.
  • [36] Li Y., Komai-Koma M., Gilchrist D.S., Hsu D.K., Liu F.T., et al.: Galectin-3 is a negative regulator of lipopolysaccharide-mediated inflammation. The Journal of Immunology 181(4) (2008) 2781-2789.
  • [37] Sato H.: Enzymatic procedure for site-specific pegylation of proteins. Advanced drug delivery reviews, 54(4) (2002) 487-504.
  • [38] Hatanaka E., Monteagudo P., Marrocos M., Campa A.: Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clinical & Experimental Immunology 146(3) (2006) 443-447.
  • [39] Cassatella M.A., Gasperini S., Russo M.P.: Cytokine Expression and Release by Neutrophilsa. Annals of the New York Academy of Sciences 832(1) (1997) 233-242.
  • [40] Selders G.S., Fetz A.E., Radic M.Z., Bowlin G.L.: An overview of the role of neutrophils in innate immunity, inflammation and host- -biomaterial integration. Regenerative Biomaterials 4(1) (2017) 55.
  • [41] Theilgaard-Mönch K., Knudsen S., Follin P., Borregaard N.: The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. The Journal of Immunology 172(12) (2004) 7684-7693.
  • [42] Peñaloza H.F., Nieto P.A., Muñoz-Durango N., Salazar- -Echegarai F.J., Torres J., et al.: Interleukin-10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae. Immunology 146(1) (2015) 100-112.
  • [43] Ovodova R.G., Golovchenko V.V., Popov S.V., Popova G.Y., Paderin N.M., et al.: Chemical composition and anti-inflammatory activity of pectic polysaccharide isolated from celery stalks. Food Chemistry 114(2) (2009) 610-615.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55ffad7b-c1fe-4dd8-b4d6-7590b008f967
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.