PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biochars from wood biomass as effective methylene blue adsorbents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forest waste is a significant ecological and economic problem, requiring effective solutions that will not only reduce its quantity but also contribute to the protection of the natural environment. This research paper focuses on the use of sawdust from mixed trees, as one of the main forest wastes, for production of biochars characterized by adsorption properties. Sawdust, a by-product of the wood industry, has a porous structure, which makes it an attractive precursor to biochar. Using pyrolysis technology and hydrothermal activation under various conditions, sawdust was transformed into biochars with a developed specific surface area. The studies proved that the parameters of the pyrolysis process have a significant impact on the structural, surface and adsorption properties of biochars. The materials were characterized based on the results of N2 adsorption, scanning electron microscopy SEM/EDS, thermogravimetric analysis (TGA), Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Raman spectroscopy. The surface characterization was made using the Boehm titration and pHpzc determination. The sorption capacity of methylene blue (MB) was studied. It was stated, that the obtained materials were characterized by a large specific surface area (227.5 - 1019 m2/g), the micro/mesoporous structure and the large pores volume (0.106 - 0.784 cm3/g). The surface oxygen functionalities allowed for large adsorption of MB. The adsorption process follows the Langmuir theory (qm,cal from 357.1 to 434.8 mg/g) and can be described using the kinetic pseudo-second-order model (R2 = 0.99). The obtained biochars showed high adsorption capacity of methylene blue impurities which indicates their significant potential for use in water purification.
Rocznik
Strony
art. no. 176509
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
  • Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
  • Institute of Chemistry, Jan Kochanowski University, Uniwersytecka Str. 7, 25-406 Kielce, Poland
Bibliografia
  • BARRETT, E.P., JOYNER, L.G., HALENDA, P.P. 1951. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373-380.
  • BIANCO, F., RACE, M., PAPIRIO, S., OLESZCZUK, P., ESPOSITO, G., 2021. The addition of biochar as a sustainable strategy for the remediation of PAH–contaminated sediments. Chemosphere 263, 128274.
  • BOEHM, H.P., 2002. Surface oxides on carbon and their analysis: a critical assessment. Carbon 40(2), 145–149.
  • CHARMAS, B., ZIĘZIO, M., JEDYNAK, K., KUCIO, K., 2023a, Quasi-isothermal (Q-TG), cryoporometric (DSC) and adsorption characterization of activated carbons. J. Therm. Anal. Calorim. 148, 7403–7419.
  • CHARMAS, B., ZIĘZIO, M., JEDYNAK, K., 2023b. Assessment of the porous structure and surface chemistry of activated biocarbons used for methylene blue adsorption. Molecules 28, 4922.
  • CHEN, N., PILLA, S., 2022. A comprehensive review on transforming lignocellulosic materials into biocarbon and its utilization for composites applications. Composites Part C. 7, 100225.
  • DING, Y., LIU, Y., LIU, S., LI, Z., TAN, X., HUANG, X., ZENG, G., ZHOU, L., ZHENG, B., 2016. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 36, 36.
  • DOGAN, M., ABAK, H., ALKAN, M., 2009. Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. J. Hazard. Mater. 164, 172.
  • FARIA, P.C.C., ÓRFAO, J.J.M., PEREIRA, M.F.R., 2004. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res. 38(8), 2043-2052.
  • FENG, D., YU, H., DENG, H., LI, F., GE, C., 2015. Adsorption Characteristics of Norfloxacin by Biochar Prepared by Cassava Dreg: Kinetics, Isotherms, and Thermodynamic Analysis. BioResources 10(4), 6751-6768.
  • FERRARI, A., ROBERTSON, J., 2004. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Phil. Trans. R. Soc. Lond. A. 362, 2477–2512.
  • FERRARI, A., ROBERTSON, J., 2000. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61(20), 14095–14107.
  • GREGG, S.J., SING, K.S.W., 1982. Adsorption, surface area and porosity. 2nd Edition, Academic Press, London.
  • GUSIATIN, M.Z., PASIECZNA-PATKOWSKA, S., BALINTOVA, M., KUŚMIERZ, M., 2023. Treatment of wastewater from soil washing with soluble humic substances using biochars and activated carbon. Energies 16(11), 4311.
  • HAMEED, B.H., AHMAD, A.L., LATIFF, K.N.A., 2007. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes Pigm. 75, 143-149.
  • HINDI, S.S.Z., 2012. Contribution of parent wood to the final properties of the carbonaceous skeleton via pyrolysis. Int. J. Sci. Eng. Invest. 1(8), 9-12.
  • ISLAM, M.A. AHMED, M.J., KHANDAY, W.A., ASIF, M., HAMEED, B.H., 2017. Mesoporous activated coconut shellderived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J. Environ. Manage. 203, 237-244.
  • JEDYNAK, K., CHARMAS, B., 2021. Preparation and characterization of physicochemical properties of spruce cone biochars activated by CO2. Materials 14, 3859.
  • JEDYNAK, K., REPELEWICZ, M., KURDZIEL, K., WIDEŁ, W., 2021. Mesoporous carbons as adsorbents to removal of methyl orange (anionic dye) and methylene blue (cationic dye) from aqueous solutions. Desalin. Water Treat. 220, 363–379
  • JEYASUBRAMANIAN, K., THANGAGIRI, B., SAKTHIVEL, A., DHAVEETHU, R.J., SEENIVASAN, S., VALLINAYAGAM, P., MADHAVAN, D., MALATHI, D.S., RATHIKA, B. 2021. A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel 292, 120243.
  • KHAN, I., SAEED, K., ZEKKER, I., ZHANG, B., HENDI, A. H., AHMAD, A., AHMAD, S., ZADA, N., AHMAD, H., SHAH, L. A., SHAH, T., & KHAN, I. 2022. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water, 14(2), 242.
  • KOOKANA, R.S., 2010. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review. Aust. J. Soil Res. 48, 627-637.
  • Lal, R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623-1627.
  • Li, M., Tang, Y., Ren, N., Zhang, Z. Cao, Y., 2017. Effect of mineral constituents on temperature-dependent structural characterization of carbon fractions in sewage sludge-derived biochar. J. Clean. Prod. 172, 3342-3350.
  • LIANG, B., LEHMANN, J., SOLOMON, D., KINYANGI, J., GROSSMAN, J., O'Neill, B., 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719-1730.
  • MA, R., MA, Y. GAO, Y. CAO, J., 2020. Preparation of micro-mesoporous carbon from seawater-impregnated sawdust by low temperature one-step CO2 activation for adsorption of oxytetracycline. SN Appl. Sci. 2(2), 171.
  • MA, X., ZHOU, B., BUDAI, A., JENG, A., HAO, X., WEI, D., ZHANG, Y., RASSE, D., 2016. Study of biochar properties by Scanning Electron Microscope – Energy Dispersive X-Ray Spectroscopy (SEM-EDX). Commun. Soil Sci. Plant Anal., 47(5), 593-601.
  • MALLAKPOUR, S., SIROUS, F., HUSSAIN, C. M., 2021. Sawdust, a versatile, inexpensive, readily available bio-waste: From mother earth to valuable materials for sustainable remediation technologies. Adv. Colloid Interface Sci., 295, 102492.
  • MARCINIAK, M., GOSCIANSKA, J., PIETRZAK, R., 2018. Physicochemical characterization of ordered mesoporous carbons functionalized by wet oxidation. J. Mater. Sci. 53, 5997 – 6007.
  • MISHRA, A.K., AROCKIADOSS, T., RAMAPRABHU, S. 2010. Study of removal of azo dye by functionalized multiwalled carbon nanotubes. Chem. Eng. J, 162(3), 1026-1034.
  • MOHAN, D., SARSWAT, A., OK, Y.S., PITTMAN, C.U., 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review. Bioresour. Technol. 160, 191-202.
  • NGUYEN, H.D., TRAN, H.N., CHAO, H.-P., LIN, C.-C., 2019. Activated carbons derived from teak sawdusthydrochars for efficient removal of methylene blue, copper, and cadmium from aqueous solution, Water 11, 2581.
  • NOWICKI, P., KAZIMIERCZAK-RAZNA, J., PIETRZK, R., 2016. Physicochemical and adsorption properties of carbonaceous sorbents prepared by activation of tropical fruit skins with potassium carbonate. Mater. Design 90, 579–585
  • OLADOYE, P.O., AJIBOYE, T.O., OMOTOLA, E.O., OYEWOLA, O.J., 2022. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 16, 100678.
  • PALANIVELL, P., AHMED, O.H., LATIFAH, O., MAJID, N.M.A., 2020. Adsorption and desorption of nitrogen, phosphorus, potassium, and soil buffering capacity following application of chicken litter biochar to an acid soil. Appl. Sci. 10, 295.
  • PALUCH, D., BAZAN-WOZNIAK, R., PIETRZAK, R., 2023. The effect of activator type on physicochemical and sorption properties of nanostructured carbon adsorbents obtained from fennel seed by chemical activation. Appl. Nanosci. https://doi.org/10.1007/s13204-023-02890-7.
  • PARHAM, R., GRAY, A., 1984. The chemistry of solid wood. Chapter 1: Formation and structure of wood. ACS, Washington DC.
  • PRZYTULSKA, A., GORBOL, M., GIL-KOWALCZYK, M., NOWICKI, P., 2022. Removal of methylene blue from aqueous solutions via adsorption on activated biocarbon obtained from post-extraction residue. Physicochem. Probl. Miner. Process. 58(2), 146357.
  • RAY, A., BANERJEE, A., DUBEY, A. 2020. Characterization of Biochars from Various Agricultural By-Products Using FTIR Spectroscopy, SEM focused with image Processing. Int. J. Agric. Environ. Biotechnol. 13(4), 423-430.
  • RIGUETO, C.V.T., PICCIN, J.S., DETTMER, A., ROSSETO, M., DOTTO, G.L., De OLIVEIRA SCHMITZ, A.P., PERONDI, D., MARTINS De FREITAS, T.S., LOSS, R.A., GERALDI, C.A.Q., 2020. Water hyacinth (Eichhornia crassipes) roots, an amazon natural waste, as an alternative biosorbent to uptake a reactive textile dye from aqueous solutions. Ecol. Eng. 150, 105817.
  • RIVERA-UTRILLA, J., BAUTISTA-TOLEDO, I., FERRO-GARCIA, M.A., MORENO-CASTILLA, C., 2001. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J. Chem. Technol. Biotechnol. 76(12), 1209–1215.
  • SALETNIK, B., SALETNIK, A., ZAGUŁA, G., BAJCAR, M., PUCHALSKI, C., 2022. The Use of Wood Pellets in the Production of High Quality Biocarbon Materials. Materials, 15, 4404.
  • SALETNIK, B., ZAGUŁA, G.; BAJCAR, M., TARAPATSKYY, M., BOBULA, G., Puchalski, C., 2019. Biochar as a Multifunctional Component of the Environment. Review. Appl. Sci. 9, 1139.
  • SHAFIQ, M., ALAZBA, A.A., AMIN, M.T., 2021. Kinetic and isotherm studies of Ni2+ and Pb2+ adsorption from synthetic wastewater using Eucalyptus camdulensis - derived Biochar. Sustainability. 13, 3785.
  • SKUBISZEWSKA-ZIĘBA, J., CHARMAS, B., KOŁTOWSKI, M., OLESZCZUK, P., 2017. Active carbons from waste biochars. Structural and thermal properties. J. Therm. Anal. Calorim. 130, 15–24.
  • SPARKS, D.L., 1989. Kinetics of Soil Chemical Processes. Academic Press, New York, 1989.
  • SZCZEŚNIAK, B., PHURIRAGPITIKHON, J., CHOMA, J., JARONIEC, M., 2020. Recent advances in the development and applications of biomass-derived carbons with uniform porosity. J. Mater. Chem. A. 36, 18464-18491.
  • TENENBAUM, T.N., 2013. Biochar: carbon mitigation from the ground up. Sustain. Soil Manag., 117, 31-36.
  • VAUGHN, S.F., KENAR, J.A., THOMPSON, A.R., PETERSON, S.C., 2013. Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Ind Crops Prod . 51, 437–443.
  • WIŚNIEWSKA, M., REJER, K., PIETRZAK, R., NOWICKI, P., 2022. Biochars and activated biocarbons prepared via conventional pyrolysis and chemical or physical activation of mugwort herb as potential adsorbents and renewable fuels. Molecules. 27, 8597.
  • WOLSKI, R., BAZAN-WOZNIAK, A., PIETRZAK, R., 2023. Adsorption of methyl red and methylene blue on carbon bioadsorbents obtained from biogas plant waste materials, Molecules 28, 6712.
  • WOOLF, D., AMONETTE, J.E., STREET-PERROTT, F.A., LEHMANN, J., Joseph, S., 2020. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56.
  • ZIELIŃSKA, A., OLESZCZUK, P., CHARMAS, B., SKUBISZEWSKA-ZIĘBA, J., PASIECZNA-PATKOWSKA, S., 2015. Effect of sewage sludge properties on the biochar characteristic. J. Anal. Appl. Pyrol. 112, 201-213.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55f8abdc-e028-4924-8dcc-e4cbc012db08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.