PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gas-sensing properties and in-situ diffuse-reflectance Fourier-transform infrared spectroscopy study of diethyl ether adsorption and reactions on SnO2 film

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diethyl ether is a common industrial reagent and medical anesthetic. It is necessary to carry out real-time monitoring of this molecule due to its harmful effects on human health. In this paper, a highly sensitive diethyl ether SnO2 gas-sensing material has been prepared by a sol-gel method. The gas sensitivity was tested by a home-made gas-sensing equipment. The surface adsorption and reaction processes between the SnO2 gas-sensing film and the diethyl ether have been studied by in situ diffuse-reflectance Fourier-transform infrared spectroscopy (DRFT-IR) at different temperatures. The results show that the SnO2 gas-sensing material has high sensitivity to diethyl ether, and the lowest detection limit can reach 1 ppm. Furthermore, ethyl (CH3CH2•), oxoethyl (CH3CH2O•), ethanol (CH3CH2OH), formaldehyde (HCHO), acetaldehyde (CH3CHO), ethylene (C2H4), H2O and CO2 surface species are formed during diethyl ether adsorption at different temperatures. A possible mechanism of the reaction process is discussed.
Słowa kluczowe
Wydawca
Rocznik
Strony
265--274
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
  • State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
autor
  • State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
Bibliografia
  • [1] CHEN G.Q., WU Y.M., ZHU T., ZHANG Y.Z., J. Atom. Mol. Phys., 24 (2007), 101 (in Chinese).
  • [2] RAKOPOULOS D.C., RAKOPOULOS C.D., GIAKOUMIS E.G., DIMARATOS A.M., Energy, 43 (2012), 214.
  • [3] BAI C.H., ZHANG B., XIU G.L., LIU Q.M., CHEN M., Fuel, 107 (2013), 400.
  • [4] YUAN X.L., XIE C.S., YANG L., ZHANG S.P., Sensor. Actuat. B-Chem., 195 (2014), 439.
  • [5] LIU J.Q., ZHANG Y.T., YUAN Y.F., ZUO W.W., Acta Chim. Sinica, 71 (2013), 102.
  • [6] CAO X.P., Forensic Sci. Technol., 4 (1981), 66 (in Chinese).
  • [7] WANG J., DONG C.R., Chinese J. Practical Int. Med., 3 (1983), 252 (in Chinese).
  • [8] SCOTTER M.J., ROBERTS D.P.T., J. Chromatogr. A, 1157 (2007), 386.
  • [9] HU J., XU K.L., JIA Y.Z., LV Y., LI Y.B., HOU X.D., Anal. Chem., 80 (2008), 7964.
  • [10] LIN H.B., SHI J.S., Sensor. Actuat. B-Chem., 92 (2003), 243.
  • [11] CAO X.A., CHEN Z.H., WANG Y.L., J. Guangzhou Uni. Nat. Sci. Ed., 9 (2010), 28 (in Chinese).
  • [12] CAO X.A., WU W.F., CHEN N., PENG Y., LIU Y.H., Sensor. Actuat. B-Chem., 137 (2009), 83.
  • [13] VOLANTI D.P., FELIX A.A., ORLANDI M.O., WHITFIELD G., YANG D.J., LONGO E., TULLER H.L., VARELA J.A., Adv. Funct. Mater., 23 (2013), 1759.
  • [14] XIE C.S., XIAO L.Q., HU M.L., BAI Z.K., XIA X.P., ZENG D.W., Sensor. Actuat. B-Chem., 145 (2010), 457.
  • [15] LI Y., HSU P.C., CHEN S.M., Sensor. Actuat. B-Chem., 2012, 174 (2012), 427.
  • [16] OHGAKI T., MATSUOKA R., WATANABE K., Sensor. Actuat. B-Chem., 150 (2010), 99.
  • [17] LIU S.Q., XIE M.J., LI Y.X., GUO X.F., JI W.J., DING W.P., Sensor. Actuat. B-Chem., 151 (2010), 229.
  • [18] HE L.F. HE, GUO Z., CHEN X., MENG F.L., LUO T., LI M.Q., LIU J.H., J. Phys. Chem. C, 113 (2009), 9581.
  • [19] WANG D., CHU X.F., GONG M.L., Sensor. Actuat. BChem., 117 (2006), 183.
  • [20] HYODO T., ABE S., SHIMIZU Y., EGASHIRA M., Sensor. Actuat. B-Chem., 93(2003), 590.
  • [21] HUANG J., MATSUNAGA N., SHIMANOE K., YAMAZOE N., KUNITAKE T., Chem. Mater., 17 (2005), 3513.
  • [22] WANG P.J., YAO B.H., WEI Q.B., ZHANG Y.Q., XUE H.F., Chem. Bioeng., 29 (2012), 21 (in Chinese).
  • [23] REN Y.F., J. Chinese Soc. Rare Earth, 3 (1985), 15 (in Chinese).
  • [24] SLOBODIAN P., RIHA P., LENGALOVA A., SVOBODA P., SAHA P., Carbon, 49 (2011), 2499.
  • [25] MA X.D., GUO H., GUO X., LV L., HE X., FENG X., Chem. J. Chinese U., 33 (2012), 1915.
  • [26] ZHAO W., ZHANG Z.Y., WU T.Z., WANG X.W., DENG Z.H., DAI K., Electron. Comp. Mater., 24 (2005), 36 (in Chinese).
  • [27] AIZAWA H., NODA K., NAGANAWA R., YAMADA K., YOSHIMOTO M., REDDY S. M., KUROSAWA S., J. Photopolym. Sci. Tec., 22 (2009), 743.
  • [28] GUI Y.H., CUI R.L., NIU L.J., Conserv. Util. Miner. Resour., 6 (2009), 32 (in Chinese).
  • [29] HUANG K.J., ZHANG Z. X., YUAN F. L., XIE C. S., Curr. Nanosci., 9 (2013), 357.
  • [30] WANG X. J., ZHANG S. P., ZHANG G. Z., Electron. Technol., 39 (2012), 53 (in Chinese).
  • [31] ZHANG H., FENG J. C., FEI T., LIU S., ZHANG T., Sensor. Actuat. B-Chem., 190 (2014), 472.
  • [32] ZHANG Z.X., HUANG K.J., YUAN F.L., XIE C. S., J. Mater. Res., 29 (2014), 139.
  • [33] LIU X.M., ZHANG Q., ITO S., WADA Y., Fuel, 165 (2016), 513.
  • [34] YIN L., CHEN D. L., CUI X., GE L. F., YANG J., YU L.L., ZHANG B., ZHANG R., SHAO G. S., Nanoscale., 6 (2014), 13690.
  • [35] LEE S. K., CHANG D., KIM S.W., J. Hazard. Mater., 268 (2014), 110.
  • [36] SUCHORSKA-WOZNIAK P., RAC O., FIEDOT M., TETERYEZ H., Sensors-Basel, 14 (2014), 20480.
  • [37] ZHANG Z.Y., ZOU R.J., SONG G.S., YU L., CHEN Z. G., HU J.Q., J. Mater. Chem., 21 (2011), 17360.
  • [38] GROSSMANN K., PAVELKO G.R., BARSAN N., Sensor. Actuat. B-Chem., 166 (2012), 787.
  • [39] YOKOSUKA Y., OKI K., NISHIKIORI H., Res. Chem. Intermediat., 35 (2009), 43.
  • [40] JANG M., MCDOW S.R., Environ. Sci. Technol., 31 (1997), 1046.
  • [41] HUANG S.Y., ZHANG C.B., HE H., Catal. Today, 139 (2008), 15.
  • [42] HU J.H., ZHENG X.F., Practical Infrared Spectroscopy, Science Press, Beijing, 2011 (in Chinese).
  • [43] FENG J.C., Structural Analysis and Identification of Organic Compounds, National Defence Industry Press, Beijing, 2003 (in Chinese).
  • [44] WENG S.F., Fourier Transform Infrared Spectrum Analysis, Chemical Industry Press, Beijing, 2010 (in Chinese).
  • [45] KECSKES T., RASKO J., KISS J., Appl. Catal. A-Gen., 273 (2004), 55.
  • [46] XU W.Z., RAFTERY D.S.J., J. Phys. Chem. B, 107 (2003), 4537.
  • [47] DU X., DU Y., GEORGE S.M., J. Phys. Chem. A, 112 (2008), 9211.
  • [48] MILLAR J.G., COLIN H., ROCHESTER H.C., J. Catal., 155 (1995), 52.
  • [49] HE Y.B., JI H.B., Chinese J. Catal., 31 (2010), 171.
  • [50] DRIESSEN M.D., GOODMAN A.L., MILLER T.M., J. Phys. Chem. B, 102 (1998), 549.
  • [51] FAN J.F., JOHN T.Y., J. Am. Chem. Soc., 118 (1996), 4686.
  • [52] KIM J.S., ITOH K., MURABAYASHI M., Chemosphere, 36 (1998), 483.
  • [53] RASKO J., KECSKES T., KISS J., J. Catal., 226 (2004), 183.
  • [54] YASUNAGA K., GILLESPIE F., SIMMIE J.M., CURRAN H.J., KURAGUCHI Y., HOSHIKAWA H., YAMANE M., HIDAKA Y., J. Phys. Chem. A, 114 (2010), 9098.
  • [55] FARKAS A.P., SOLYMOSI F., Surf. Sci., 602 (2008), 1497.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55f87e57-fdd6-4c97-af6b-d7dc8b5e8e3a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.