Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
As a part of a larger project, a set of 27 evolutionary models of cool close binaries was computed under the assumption that their evolution is influenced by the magnetized winds blowing from both components. Short period binaries with the initial periods of 1.5 d, 2.0 d and 2.5 d were considered. For each period three values of 1.3 Msun, 1.1 Msun and 0.9 Msun were taken as the initial masses of the more massive components. The initial masses of the less massive components were adjusted to avoid extreme mass ratios. Here the results of the computations of the first evolutionary phase are presented, which starts from the initial conditions and ends when the more massive component reaches its critical Roche lobe. In all considered cases this phase lasts for several Gyr. For binaries with the higher total mass and/or longer initial periods this time is equal to, or longer than the main sequence life time of the more massive component. For the remaining binaries it amounts to a substantial fraction of this life time. From the statistical analysis of models, the predicted period distribution of detached binaries with periods shorter than 2 d was obtained and compared to the observed distribution from the ASAS data. An excellent agreement was obtained under the assumption that the period distribution in this range is determined solely by magnetic braking (MB), i.e., the mass and angular momentum loss due to the magnetized winds, as considered in the present paper. This result indicates, in particular, that virtually all cool detached binaries with periods of a few tenths of a day, believed to be the immediate progenitors of W UMa-type stars, were formed from young detached systems with periods around 2-3 d. MB is the dominant formation mechanism of cool contact binaries. It operates on the time scale of several Gyr rendering them rather old, with age of 6-10 Gyr. The results of the present analysis will be used as input data to investigate the subsequent evolution of the binaries, through the mass exchange phase and contact or semi-detached configuration till the ultimate merging of the ultimate merging of the components.
Czasopismo
Rocznik
Tom
Strony
139--159
Opis fizyczny
Bibliogr. 50 poz., tab., wykr.
Twórcy
autor
- Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
Bibliografia
- Bilir, S., Karata¸s, Y., Demircan, and O., and Eker, Z. 2005, MNRAS, 357, 497.
- Bonnell, I.A. 2001, in: “The Formation of Binary Stars”, IAU Symp. No. 200, Eds. H. Zinnecker, and R.D. Mathieu, ASP Conf. Ser., p. 23.
- Boss, A.P. 1993, in: “The Realm of Interacting Binary Stars”, Eds. J. Sahade, et al. Kluwer, Dordrecht, p. 355.
- Duquennoy, A., and Mayor, M. 1991, A&A, 248, 485.
- Eggleton, P.P. 1983, ApJ, 268, 368.
- Eggleton, P.P., and Kiseleva-Eggleton, L. 2006, Astrophys. Space Sci., 304, 75.
- Fabrycky, D., and Tremaine, S. 2007, ApJ, 669, 1298.
- Flannery, B.P. 1976, ApJ, 205, 217.
- Gazeas, K., and St˛epie´n, K. 2008, MNRAS, 390, 1577.
- Girardi, L., Bressan, A., Bertelli, G., and Chiosi, C. 2000, A&AS, 141, 371.
- Griffin, R.F. 1985, in: “Interacting Binaries”, Eds. P.P Eggleton and J.E. Pringle, Reidel, Dordrecht, p. 1.
- Guinan, E.F., and Bradstreet, D.H. 1988, in: “Formation and Evolution of Low Mass Stars”, Eds. A.K. Dupree, and M.T. Logo, Kluwer, Dordrecht, p. 345.
- Hut, P. 1983, ApJ, 272, L29.
- Kaluzny, J., and Rucinski, S.M. 1993, in: “Blue Stragglers”, ASP Conf. Ser., Vol. 53, Ed. R.A. Saffer, p. 164.
- Kuiper, G.P. 1941, ApJ, 93, 133.
- Li, L., Han, Z., and Zhang, F. 2005, MNRAS, 360, 272.
- Lucy, L.B. 1968, ApJ, 151, 1123.
- Lucy, L.B. 1976, ApJ, 205, 208.
- Maceroni, C., and Rucinski, S.M. 1999, AJ, 118, 1819.
- Machida, M.N., Tomisaka, K., Matsumoto, T., and Inutsuka, S. 2008, ApJ, 677, 327.
- Mathieu, R.D. 1994, Ann. Rev. Astron. Astrophys., 32, 465.
- Mochnacki, S.W. 1981, ApJ, 245, 650.
- Paczyński, B., Szczygieł, D. M., Pilecki, B., and Pojmański, G. 2006, MNRAS, 368, 1311.
- Pilecki, B. 2010, PhD Thesis.
- Pojmański, G. 2002, Acta Astron., 52, 397.
- Rahunen, T. 1983, A&A, 117, 235.
- Randich, S., Schmitt, J.H.M.M., Prosser, C.F., and Stauffer, J.R. 1996, A&A, 305, 785.
- Robertson, J.A., and Eggleton, P.P. 1977, MNRAS, 179, 359.
- Rucinski, S.M. 1998, AJ, 116, 2998.
- Rucinski, S.M. 2000, AJ, 120, 319.
- Rucinski, S.M. 2006, MNRAS, 368, 1319.
- Rucinski, S.M. 2007, MNRAS, 382, 393.
- Rucinski, S.M., Pribulla, T., and van Kerkwijk, M.H. 2007, AJ, 134, 2353.
- Salpeter, E. 1955, ApJ, 121, 161.
- Schaller, G., Schaerer, D., Meynet, G., and Maeder, A. 1992, A&A, 96, 269.
- Stępień, K. 1995, MNRAS, 274, 1019.
- Stępień, K. 2004, in: “Stars as Suns: Activity, Evolution and Planets”, IAU Symp. No. 219, Eds. A.K. Dupree, and A.O. Benz, Astr. Soc. of Pacific, p. 967.
- Stępień, K. 2006a, Acta Astron., 56, 199.
- Stępień, K. 2006b, Acta Astron., 56, 347.
- Stępień, K. 2009, MNRAS, 397, 857.
- Stępień, K. 2011, A&A, , in press, arXiv:astro-ph/11052627.
- Stępień, K., Schmitt, J.H.M.M., and Voges, W. 2001, A&A, 370, 157.
- Szymański, M., Kubiak, M., and Udalski, A. 2001, Acta Astron., 51, 259.
- Tokovinin, A., Thomas, S., Sterzik, M., and Udry, S. 2006, A&A, 450, 681.
- Torres, G., Andersen, J. and Giménez, A. 2010, A&AReview, 18, 67.
- Webbink, R.F. 2003, in: “3D Stellar Evolution”, ASP Conf. Ser., Vol. 293, Eds. S. Turcotte et al. p. 76.
- Wood, B.E., Müller, H.-R., Zank, G.P., and Linsky, J.L. 2002, ApJ, 574, 412.
- Wood, B.E., Müller, H.-R., Zank, G.P., Linsky, J.L., and Redfield, S. 2005, ApJ, 628, L143.
- Yakut, K., and Eggleton, P.P. 2005, ApJ, 629, 1055.
- Zhang, X.B., Deng, L., and Lu, P. 2009, AJ, 138, 680.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55f6994d-f1cb-4cdb-a257-02bd34fe5d76