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ABSTRACT

Purpose: The purpose of the study is to develop an augmented algorithm with optimised 
energy and improvised synchronisation to assist the knee exoskeleton design. This enhanced 
algorithm is used to estimate the accurate left and right movement signals from the brain and 
accordingly moves the lower-limb exoskeleton with the help of motors.
Design/methodology/approach: An optimised deep learning algorithm is developed to 
differentiate the right and left leg movements from the acquired brain signals. The obtained test 
signals are then compared with the signals obtained from the conventional algorithm to find the 
accuracy of the algorithm.
Findings: The obtained average accuracy rate of about 63% illustrates the improvised 
differentiation in identifying the right and left leg movement.
Research limitations/implications: The future work involves the comparative study of 
the proposed algorithm with other classification technologies to extract more reliable results. 
A comparative analysis of the replaceable and rechargeable battery will be done in the future 
study to exhibit the effectiveness of the proposed model.
Originality/value: This study involves the extended study of five frequency regions namely 
alpha, beta, gamma, delta and theta, to handle the real-time EEG signal processing exoskeleton, 
model.
Keywords: Knee exoskeleton, Feature extraction, Data classification, ANN algorithm
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1. Introduction 
 

The advancement in science and technology has led to a 
revolution in many sectors, especially in the medical field. 
The development of modernised types of equipment and 
methodologies has changed the lifestyle of many people who 
are suffering due to various problems. One such is the 
exoskeleton, a type of robot that helps nerve-damaged 
people move their limbs like normal people. This additional 
assistance gives power to the limb muscles for the rehab and 
movement of nerve-damaged patients. The earlier assistive 
methods, like wheelchairs, only enable movement on a flat 
surface, have limitations like space constraints, and do not 
support easy transportation. The exoskeletons are an 
excellent assistive system that helps the patients move on 
their own to any place without any constraints.  

It is also an economic fact that spinal cord-injured 
persons have a huge impact on the healthcare economy [1]. 
It was also estimated that about more than 50 persons per 
million rehabilitees are there every year around the world 
[2]. Among them, 60% were partially paralysed, which 
includes young and middle-aged men who have to work to 
support their families. But when paralysed, they must 
depend on the health care system and others to perform their 
own activities [3]. Due to economic constraints, most 
affected people do not even opt for rehabilitation. Orthotic 
types of equipment developed to serve the purpose have 
many practical constraints and limited functionalities [4,5]. 
They are only used as supportive rather than assistive 
devices hence being passive devices [6]. Hence to assist the 
disabled person, researchers concentrated on the 
development of active assistive devices, which led to the 
invention of exoskeletons around the 1960s [7]. With the 
recent development in technology and science, wearable 
exoskeletons have been designed in recent years [8-15]. 
Artificial Intelligence algorithms and neural network 
algorithms were used in coordination to synchronise the 
muscle activity with the brain [16].  

Generally, the development of the mind synchronised 
assistive devices for the lower limb was much less than that 
of the upper limb research [17]. EEG signals are utilised for 
the identification and extraction of the dataset that 
synchronises the active devices with the brain [18]. This 
study also includes a detailed investigation of the EEG 
signal classification for the right and the left limb using 
ANN algorithms to augment synchronisation accuracy.  

In spinal injured patients, there is no synchronisation 
between the conceptualised and the executed movements. 
This is fixed in the active assistive devices by mirroring the 
signals using motors. Generally, mirroring of the signals is 
not only executed when the patient conceptualises the 

movements but also when another person executes the 
movement [19]. This helps in the locomotive of brain-
impaired patients as well. 

To study the EEG signals from the patient, electrodes 
were fixed at the head of the patient. Two electrodes are 
fixed at each side to catch the right and left brain activity. 
Also, two additional electrodes were fixed at the lower head 
to record the spinal activities. In the existing studies, only 
alpha and beta frequencies were used, but in this proposed 
model, alpha, beta, gamma, delta and theta frequencies were 
picked up to analyse the accurate synchronisation and the 
associated limb movements [20].  

The aim of this study is to develop an effective active 
assistive device, aka knee exoskeleton model, which is 
pulled by the external motor simulated through the brain 
signals. The following section involves the literature survey 
analysis, design considerations and hardware requirements 
of the proposed design, respectively. 
 
 
2. Literature review 
 

The study of the previous research and the discoveries 
throws some light on the knowledge about the challenges 
faced and the development made from scratch in research. 
Marchel et al. (2009) suggested that the control system can 
be categorised as assistive control, solution control, reality 
control and trained control [21]. 

Assistive control in robotic devices is obtained through 
the body weight balance and based on the functionality of 
the limbs [22]. Customisation of the limb movement is based 
on the specific functions assigned to each controller [23]. 

There were different studies and research on assistive 
devices for nerve-damaged patients. Earlier designed 
assistive devices were too rigid and didn’t support the 
movement of the foot separately [24]. The exoskeletons that 
assist the knee movement can be categorised as passive, 
active and semi-active according to their design and 
functionality [25-28]. 

Passive, assistive devices are rigid design that helps 
move the lower limbs without any control. They just support 
the body weight balance and do not help in the 
conceptualised movement [25]. Semi-active assistive 
devices help move the knee and limbs in different directions 
but with a controller that has pre-programmed control [26].  

Active assistive devices are the ray of hope for nerve-
impaired patients where the limb movements are 
synchronised with the brain activity, and the assistive 
devices execute the conceptualised movements [28].  

In 1981 first assistive device using a D.C. motor was 
discovered by Jaukovic. The DC motor in this device was 
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located externally at the ankle extension. Then came the 
design of the walking exoskeletons, designed by Argo 
medical technologies and Ekso Bionics [29-30]. These 
devices are controlled through the motors fixed at the hip 
region of the wearer, along with the sensors. 

In our current study, the area of interest is the knee joint. 
In this, the research pioneer was Berlin University which 
developed a spring-controlled knee structure [31]. This design 
was commercially marketed by AlterG and was used in real 
time [32]. But these devices had limitations like a heavy-
weight and minimised performance efficiency [33]. These 
knee systems were designed with a single-axis joint which 
enables only one-directional movement. Whereas the normal 
knee joint is Omni directional due to its ball socket joint. 
This swing phase of the movement was later considered and 
included in the computer-controlled devices [34].  

Then sensors like foot sensors, motion sensors and 
torque sensors were used to monitor and observe the 
movement of the functioning limbs to customise the 
assistive devices. Then a complete set, including the 
controller and the motor setup, was designed [35].  

To design a real-time assistive device brain wave 
interface was incorporated into the exoskeleton design [36]. 
This helps disabled patients with normal brain activity with 
damaged limb nerves [37]. The major difficulty in extracting 
this brain feature is eliminating the noise signal to attain 
accurate EEG signals [38]. Hence classification feature is 
used for the data extraction from the brain signals. These 
devices are powered by an internal battery connected to the 
exoskeleton. Complex neural algorithms do not achieve 
power optimisation in the existing systems. Hence, this 
study focuses on developing an energy-optimised algorithm 
to extract the data signals by eliminating noise and 
processing through the proposed hybrid algorithm. 
 
 
3. Research methods 
 
3.1. Methods 
 

The methods of the proposed research start from the 
relative identification of the right and left brain signals and 
their synchronisation using the electrode signals in Alpha 
(α), Beta (β), Gamma (γ), Delta (δ) and Theta (θ) frequencies. 

The dataset of 16 healthy subjects with no history of knee 
or nerve damage was obtained from Adrienne et al. (2021). 
In this work, the data was obtained from two different 
sessions to get the average data with improvised reliability 
[38]. In this study, the participants were given a head cap 
connected with 64 electrode channels. These electrodes were 
preset with the optimal impedance level of 5000 ohms so 

that no channel gets dropped during the brain signal 
acquisition. During each session, the data corresponding to 
the conceptualisation and execution was acquired at the 
frequency rate of 1000 Hz. First, the conceptual movement 
data was captured. Then the participants were belted in a 
lying position which restricted their knee movement to 
analyse the executed movement, as shown in Figure 1. 

 

 
 
Fig.1. Experimental setup to collect the executed movement 
dataset [38] 
 

The limbs are attached to a foot pad with a spring-loaded 
mechanism in this experimental setup. Whenever the subject 
rises and lowers his knee, the spring sets the position of the 
leg back to its original position. Thus the controlled 
movement of the lower limbs was recorded. First, the left leg 
was lifted and stretched to obtain the correct data set, 
followed by the right leg. This was done six times to obtain 
12 dataset cycles. A visual stimulus is given in the monitor 
to track the phase and to replicate the conceptual stimulus.  
 
3.2. Data acquisition 
 

About 18 electrodes were placed, as illustrated in Figure 
2. Among them, four electrodes were fixed on the head at 
the lower and upper quadrants, namely E1, E2, E3 and E4. 
These electrodes were analysed using the MATLAB 
simulation software developed by Mathworks. 
Corresponding dc offset data of the electrodes were 
corrected in this simulation tool. Eye blinking may cause 
induced noise in the EEG signals, which is cancelled using 
the Electro oculography channel. These channel thresholds 
and marks the wave on the graph during every blink, omitted 
during data processing and considered an error. Pre-
processing these signals involves the elimination of the noise 
by passing through the bandpass filter. The second-order 
bandpass filter with a frequency range of [5,60] Hz was used 
to obtain noise-free signals.  

3.  Research methods
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Fig. 2. Placement of electrodes in the scalp 
 

Data classification was done to identify the feature of the 
signals at their respective frequency bands like Alpha (α), 
Beta (β), Gamma (γ), Delta (δ) and Theta (θ). To classify the 
feature of the signal, Discrete Fourier transformation is 
applied with different frequency ranges of Alpha (8-12 Hz), 
Beta (13-15 Hz), Gamma (16-30 Hz), Delta (31-45 Hz) and 
Theta (46-60 Hz). The resolution of the frequency at each 
band was 0.9645. This resolution was obtained by sampling 
the frequency at the rate of 28 samples per period. The 
normalisation of the obtained samples follows this step with 
respect to the spectral frequency. The entire process 
flowchart is illustrated in Figure 3. 
 
3.3. Data analysis 
 

The reliability of the obtained dataset was verified by 
averaging the data across the sessions. Separate simulations 
were done for each side (Left and Right) with the attributes 
N.P.=16 (Number of subjects), NEC=60 (Electrode 
channels), and NS=2 (number of sessions). Before executing 
the simulation, the dataset was marked as random with a 
reliable G-coefficient index range [0,1]. The reliability of the 
data is higher with higher values. The following conditions 
were considered during the simulations: 

 The obtained dataset is binary, corresponding to L=0 and 
R=1.  

 The predictor signals should be continuous, 
corresponding to the EEG waveform. 

 Multi-dimensional processing for channels is iterated 16 
times, corresponding to the number of subject 
considerations. 

 
 

Fig. 3. Data processing flowchart 
 
Classification techniques involve the supervised neural 

learning algorithm. The CNN algorithm complicates the data 
processing and uses extended memory, which requires more 
power. The ultimate aim of this study is to optimise the power 
utilisation during data processing, and hence Supervised 
ANN algorithm is used. This reduces the computational 
complexity, which further reduces energy utilisation, thus 
achieving energy optimisation. Also, this algorithm can 
easily customise the performance attributes depending on 
the training group size. More stable results were obtained at 
the ratio of 3:1 of the training group to the testers.  

The designed code was then simulated in the MatLab 
simulator, and the corresponding dataset was given as the input 
to the knee exoskeleton. The knee exoskeleton is powered by 
a replaceable battery and is moved through the dc motor.  

3.3.  Data analysis
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4. Results  
 

The generalised coefficient of the EEG signals obtained 
from the conceptualised movement at different frequency 
combinations was 0.65, considered a moderate value. The 
overall variation of the dataset was 0.5% which is considered 
to be more reliable and robust. The variance ratio of a 
number of subjects is 12.5%, to the number of electrode 
channels is 1.8%, to the product of participant and sessions 
is 10.5%, to the product of participant and trail is 3%, and to 
that of the error is 70%, respectively.  

 
Table 1. 
Overall correct percentage of synchronisation between the 
conceptual and executed movements in Left and Right 
Subjects L (correct) in % R (correct) in % Average in % 

1 70.8 62.2 66.5 
2 64.2 65.4 64.8 
3 50.4 63.1 56.8 
4 63.6 55.8 59.7 
5 55.2 68.3 61.8 
6 56.8 59.8 58.3 
7 51.8 71.5 61.7 
8 72.6 55.9 64.3 
9 61.5 66.5 64.0 

10 72.8 55.1 64.0 
11 72.9 68.3 70.6 
12 79.1 49.5 64.3 
13 62.8 78.2 70.5 
14 63.8 53.9 58.9 
15 66.3 66.3 66.3 
16 47.6 76.1 61.9 

 
Table 1 presents the synchronisation percentage of the 

conceptual and executed movement. For each subject, an 
average of 63.4% synchronisation was achieved between the 
left and right. The results of this experiment illustrate that 
the electrodes in the upper quadrants identify the important 
region to fix the sensor to obtain accurate EEG signals to 
obtain enhanced synchronisation between the conceptual 
and executed limb movements. The electrodes fixed at the 
lower quadrants identify the region of sensors that 
differentiates the right and left brain activity. The 
corresponding results achieved at the different frequency 
bands are closely associated with the executed movements. 
The correspondence between the frequency bands was 
consistent with the existing studies and had significant 
considerations.  

The overall correctness of 63% features the challenge of 
identifying the right and left leg signals from the brain. The 

rate of accuracy is much more effective than the other 
existing techniques.  
 
5. Discussion 
 

The rationale of the current study is to identify the right 
and left limb movement signals from the brain's cortex 
region, which are collected through the electrodes. From the 
analysis, it is clear that Electrodes C1 and C2 hold a trivial 
role in estimating the right and left limb movements, 
interpreting the importance of the sensi cortex region in the 
brain for the differentiation of the signals. Particularly to 
differentiate the limb movements, the signals obtained from 
the electrodes PO3 and PO4 are useful as they are associated 
with the mirror neuron stimulus.  Alpha, beta and gamma 
waves are very closely related to lower limb movements, and 
the corresponding results of this current study are obtained 
from the delta and theta waves.  

The average classification ratio of 63% features 
difficulties differentiating the right and left limb signals. 
Thus this study is considerately demonstrated to prove the 
difficulty in classifying the right and left limb movements 
from the brain signals. The future work involves the 
augmentation of the accuracy through deep learning 
methods, and the obtained results will be compared against 
the other conventional algorithms. 

 
6. Future work and conclusion 
 

The proposed study is to design a knee exoskeleton 
synchronised with the brain signals to obtain proper limb 
movement from the brain signals. This study has proved the 
success rate in identifying the left and right leg signals from 
the brain with a considerable result. The study with five 
frequency bands gave a novel methodology to improvise the 
synchronisation between the conceptual and the executed 
leg movements. Thus compromised mobility with nominal 
success rate is achieved in the simulation. 

The future work involves the comparative study of the 
proposed algorithm with other classification technologies to 
extract more reliable results. To produce an extended 
analysis of the better algorithm for feature extraction 
detailed comparative study will be done with the other 
neural network algorithms. The dc motor in the active 
assistance device is powered by a replaceable battery which 
is expensive. To overcome this issue, solar rechargeable 
battery is designed using the MPPT algorithm to enhance 
battery durability. A comparative analysis of the replaceable 
and rechargeable battery will be done in the future to exhibit 
the proposed model's effectiveness. 

4.  Results

5.  Discussion

6.  Future work and conclusion
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Additional information 
 

The work presented in this paper was presented in “Two 
Days Virtual National Meet on Nano Interface Science 
(NIS-2021)”, Chettinad Academy of Research & Education, 
Chennai, India, 2021.  
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