Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An optical vortex can appear when a light beam with nonzero angular momentum propagates in a suitable nonlinear medium. In some situations has been observed that the light intensity vanish at the center of the vortex (where the phase of the electromagnetic field is undefined), while the light beam assumes a ring-shaped structure. In this paper we consider two classical cases in which such kind of phenomena occur: the case of the self focusing cubic nonlinearity, and the case of competing quintic and cubic nonlinearity. In both cases we study the nonlinear Schrödinger equation of the optical field (with various boundary conditions) by means of min-max methods, and we prove the existence of saddle point type solutions, as well as minimum type solutions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
95--105
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Politecnico di Bari, v. Orabona, 4, 70126 Bari, Italy
Bibliografia
- [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and Applications, J. Funct. Anal. 14 (1973), 349-381.
- [2] N. Antar, Pseudospectral renormalization method for solitons in quasicrystal lattice with the cubic-quintic nonlinearity, J. Appl. Math. 2014 (2014), Article ID 848153.
- [3] A. T. Avelar, D. Bazeia and W. B. Cardoso, Solitons with cubic and quintic nonlinearities modulated in space and time, Phys. Rev. E 79 (2009), Article ID 025602.
- [4] V. Benci and N. Visciglia, Solitary waves with non-vanishing angular momentum, Adv. Nonlinear Stud. 3 (2003), 151-160.
- [5] A. S. Desyatnikov, Y. S. Kivshar and. L Tomer, Optical vortices and vortex solitons, Progr. Opt. 47 (2005), 291-391.
- [6] M. Esteban and P. L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, in: Partial Differential Equations and Calculus of Variation, Birkhäuser, Boston (1989), 401-449.
- [7] T. Mizumachi, Vortex solitons for 2D focusing nonlinear Schrödinger equation, Differential Integral Equations 18 (2005), no. 4, 431-450.
- [8] V. Prytula, V. Vekslerchik and V. M. Pérez-Garcîa, Eigenvalue cutoff in the cubic-quintic nonlinear Schrödinger equation, Phys. Rev. E 78 (2008), Article ID 027601.
- [9] J. R. Salgueiro and Y. S. Kivshar, Switching with vortex beams in nonlinear concentric couplers, Opt. Express 15 (2007), no. 20,12916-12921.
- [10] V. Skarka, N. B. Aleksie and V. I. Berezhiani, Dynamics of electromagnetic beam with phase dislocation in saturable non-linear media, Phys. Lett. A 291 (2001), 124-132.
- [11] X. Song and H. M. Li, Exact solutions of the two-dimensional cubic-quintic nonlinear Schrödinger equation with spatially modulated nonlinearities, Commun. Theor. Phys. 59 (2013), 290-294.
- [12] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2,1 49-162.
- [13] Y. Yang and R. Zhang, Existence of optical vortices, 51AM). Math. Anal. 46 (2014), no. 1, 484-498.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55e87822-6efb-4d62-ab02-775ebd9fce58