PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Kinetics of the reaction of platinum (IV) chloride complex Ions in aqueous solution, in the presence of C2H5OH

Identyfikatory
Warianty tytułu
EN
Kinetyka reakcji kompleksów chlorkowych platyny(IV) w roztworze wodnym, w obecności C2H5OH
Języki publikacji
EN
Abstrakty
EN
In this work, the kinetic studies of the reaction of platinum (IV) chloride complexes ([PtCl6 ] 2-) with ethyl alcohol in aqueous solution were carried out. Obtained data suggest the complex character of the reaction which is sensitive to pH of the solution. It was found that in the alkaline solution two parallel reaction paths are present: hydrolysis and the redox reaction of [PtCl6 ] 2-. It leads to [PtCl5 (H2O)] - and [PtCl4 ] 2- ions formation in the system. Both reactions has bimolecular character and at 55oC and at pH =12, are described by the second-order rate constants: k1 = 0.085.10 -3 [M -1s -1] (for the hydrolysis) and k2 = 3.55.10 -3 [M -1s -1] (for the redox reaction). Experimentally determined values of enthalpy and entropy of activation for the hydrolysis reaction are equal to 23.654 [kJ mol -1] and -187.16 [J mol -1 K -1], respectively. The same parameters for the redox reaction are as follows: 24.016 [kJ mol -1] and -166.591 [J mol -1 K -1], respectively. As a result of data analysis it was also suggested that the ethyl alcohol may play a catalytic role during [PtCl6 ] 2- hydrolysis. Its presence leads to slight acceleration of this reaction and to slow Pt 4+ reduction.
PL
W pracy przedstawiono wyniki badań kinetycznych reakcji kompleksów chlorkowych platyny (IV) ([PKI6]2') z alkoholem ety/owym, w roztworach wodnych. Otrzymane dane sugerują złożony charakter reakcji, czuły na pH roztworu. Wykazano, że w roztworach alkalicznych obecne sq dwie rów¬noległe ścieżki reakcji: hydroliza i reakcja redoks [PtCI6]2'. Prowadzi to do utworzenia jonów [PtCI5(H20)]~ i[PtCIJ2' w układzie. Obydwie reakcją mają charakter dwucząsteczkowy i w temperaturze 55°Coraz przy pH= 12 sq opisane przez drugorzędowe stałe szybkości reakcji: kt = 0,085.10'3 [M'1 s'1] (dla hydrolizy) ik2 - 3,55.10~3 [M~1s~1] (dla reakcji redoks). Wyznaczone doświadczalnie wartości entalpii i entropii aktywacji dla reakcji hydrolizy są odpowiednio równe 23,89 [kj-mol1] i -152,9 [l-mol''-K'']. Te same parametry dla reakcji redoks wynoszą: 24,016 [kj-mol~'] i -166,6 [l-mol^-K1]. lako wynik analiz danych doświadczalnych sugeruje się również, że alkohol etylowy pełni rolę katalizatora w czasie hydrolizy [PtCIJ2'. lego obecność prowadzi do nieznacznego przyspieszenia tej reakcji oraz do powolnej redukcji Pt4+.
Rocznik
Strony
337--343
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
  • AGH University if Science and Technology, Faculty of Non-Ferrous Metals, 30 Mickiewicz Avenue, 30-059 Kraków, Poland
  • GE Medical Healthcare IT CoE, Kraków, Poland
Bibliografia
  • [1] Applied Photophysics Ltd., 21 Mole Business Park, Randalls Rd, Leatherhead KT22 7BA, Wielka Brytania.
  • [2] Baigent C. L., G. Muller. 1980. "A colloidal gold prepared with ultrasonics". Cellular and Molecular Life Sciences 36: 472-473.
  • [3] Belskaya Olga, T. I. Gulyaeva, A. B. Abruzov, V. K. Duplyakin, V. A. Likholobov. 2010. "Interaction between Pt(IV) and Pd(II) Chloro Complexes in Solution and on the γ-Al2O3 Surface". Kinetics and Catalysis 51: 105-112.
  • [4] Chen C. W., D. Tano, M. Akashi. 1999. "Synthesis of platinum colloids sterically stabilized by poly(N-vinylformamide) or poly(N -vinylalkylamide) and their stability towards salt". Colloid. Polymer Science 277: 488-493.
  • [5] Chen C. W., M. Akashi. 1997. "Synthesis, Characterization, and Catalytic Properties of Colloidal Platinum Nanoparticles Protected by Poly(N-isopropylacrylamide)". Langmuir 13: 6465-6472.
  • [6] Gaussian 0.3 software, Gaussian Inc., USA.
  • [7] Gordon R. B., M. Bertram, T. E. Graedel. 2006. "Metal stocks and sustainability". Procceding. National Academy of Science of the United States of America 103: 1209-1214.
  • [8] Hindmarsh Kathryn, Donald A. House, Rudi van Eldik. 1998. "The redox kinetics of platinum(II)/(IV) complexes". Inorganica Chimica Acta 278: 32-42.
  • [9] Ingelsten H. H., R. Bagwe, A. Palmqvist, M. Skoglundh, Ch. Svanberg, K. Homlberg, D. O. Shah. 2001. "Kinetics of the Formation of Nano-Sized Platinum Particles in Water-in-Oil Microemulsions". Journal of Colloid and Interface Science 241: 104-111.
  • [10] Jorgensen A. O., K. P. Campbell. 1984. "Evidence for the Presence of Calsequestrin in Two Structurally Different Regions of Myocardial Sarcoplasmic Reticulum". Journal of Cell Biology 98: 1597-1602.
  • [11] Jorgensen C. Klixbüll. 1956. "Complexes of 4d- and 5d-Groups. II. Crystal Field and Electron Transfer Spectra of Ruthenium(II) and (III), Iridium(IV) and Platinum(IV)". Acta Chemica Scandinavica 10: 518-534.
  • [12] Kameo A., T. Yoshimura, K. Esami. 2003. "Preparation of noble metal nanoparticles in supercritical carbon dioxide". Colloids and Surfaces A. Physicochemical and Engineering Aspects 215: 181-189.
  • [13] Lemma Kelemu, Donald A. House, Negussie Retta, Lars Elding. 2002. "Kinetics and mechanism for reduction of halo- and haloam( m)ine platinum(IV) complexes by L-ascorbate". Inorganica Chimica Acta 331: 98-108.
  • [14] Mehrotra U. S., M. C. Agrawal, S. P. Mushran. 1970. "Reduction of hexachloroplatinate by ascorbic acid". Journal of Inorganic and Nuclear Chemistry 32: 2325-2329.
  • [15] Mishra B., C. D. Anderson, P. R. Taylor, C. G. Anderson, D. Apelian, B. Blanpain. 2012. "Recycling of Strategic Metals". Journal of Metals 64: 441-443.
  • [16] Murray Pieter, Klaus R. Koch, Rudi van Eldik. 2014. "Mechanism of tetrachloroplatinate(II) oxidation by hydrogen peroxide in hydrochloric acid solution". Dalton Transactions 43: 6308-6314.
  • [17] Patrushev V. V. 1998. "Reduction of platinum group metals in phosphoric acid solutions by formalin". Hydrometallurgy 50: 89- 101.
  • [18] Perrin D. D. Dissociation Constants of Organic Bases and Aqueous Solution. 1965. London: Butterworths.
  • [19] Perrin D. D. Dissociation Constants of Organic Bases and Aqueous Solution. Supplement. 1965. London: Butterworths.
  • [20] Reck Barbara, T. E. Graedel. 2012. "Challenges in Metal Recycling". Science 337: 690-694.
  • [21] Siiman O., W. P. Hsu. 1986. "Surface-enhanced Raman scattering (SERS) enhancements and excitation profiles for 3,5-pyridinedicarboxylate and dabsyl aspartate on colloidal gold". Journal of the Chemical Society. Faraday Transactions 1 82: 851-867.
  • [22] Toshima N., T. Yonezawa, K. Kushihashi. 1993. "Polymer-protected palladium-platinum bimetallic clusters: preparation, catalytic properties and structural considerations". Journal of the Chemical Society. Faraday Transactions 1 89: 2537-2543.
  • [23] W. Yu, H. Liu, M. Liu, J. Zheng. 1999. "Preparation of Polymer-Stabilized Noble Metal Colloids". Journal of Colloid and Interface Science 210: 218-221.
  • [24] Wang Q., H. Liu, H. Wang. 1997. "Immobilization of Polymer-Stabilized Noble Metal Colloids and Their Catalytic Properties for Hydrogenation of Olefins". Journal of Colloid and Interface Science 190: 80-386.
  • [25] Wesdemiotis C., A. Fura, F. W. McLafferty. 1991. "Protonated Ethanol and Its Neutral Counterparts". American Society for Mass Spectrometry 2: 459-463.
  • [26] Wu M. L., D. H. Chen, T. C. Huang. 2001. "Preparation of Pd/Pt Bimetallic Nanoparticles in Water/AOT/Isooctane Microemulsions". Journal of Colloid and Interface Science 243: 102-108.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55e436c3-160b-4d65-abfc-6ef5e8588c8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.