PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal control problems on the co-adjoint Lie groupoids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work we study the invariant optimal control problem on Lie groupoids. We show that any invariant optimal control problem on a Lie groupoid reduces to its co-adjoint Lie algebroid. In the final section of the paper, we present an illustrative example.
Rocznik
Strony
715--742
Opis fizyczny
Bibliogr. 14 poz., wzory
Twórcy
  • Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Bibliografia
  • [1] Gh. Haghighatdoost and R. Ayoubi: Hamiltonian systems on co-adjoint Lie groupoids. Journal of Lie Theory, 31(2), (2021), 493-516.
  • [2] Gh. Haghighatdoost and R. Ayoubi: Euler integrable Hamiltonian system on co-adjoint Lie groupoids. ResearchGate publications, (2021).
  • [3] Gh. Haghighatdoost and R. Ayoubi: Generalized geometric Hamilton-Jacobi theorem on Lie algebroids. arXiv: 1902.06969v1, (2019). DOI: 10.48550/arXiv.1902.06969
  • [4] sc M. Jozwikowski: Optimal control theory on almost Lie algebroids. PhD dissertation, Institute of Mathematics, Polish Academy of Sciences, arXiv:1111.1549v1, 2011. DOI: 10.48550/arXiv.1111.1549
  • [5] J. Grabowski and M. Jozwikowski: Pontryagin maximum principle on almost Lie algebroids. SIAM Journal on Control and Optimization, 49(3), (2011), 1306-1357. DOI: 10.1137/090760246
  • [6] K.C.H. Mackenzie: General theory of Lie groupoids and Lie algebroids. London Mathematical Society, Lecture notes series 213, Cambridge University Press, Cambridge, 2005.
  • [7] E. Martinez: Reduction in optimal control theory. Reports on Mathematical Physics, 53(1), (2004), 79-90. DOI: 10.1016/S0034-4877(04)90005-5
  • [8] J. Baillieul and J.C. Willems: (Eds.) Mathematical Control Theory. Springer-Verlag New York, Inc. 1999.
  • [9] H.J. Sussmann: Geometry and Optimal Control, Mathematical Control Theory. Book of essays a in honor of Roger W. Brockett on the o ccasion of his 60th birthday. J. Baillieul and J.C. Willems (Eds.), Springer-Verlag, 1998.
  • [10] V. Jurdjevic: Geometric Control Theory. Cambridge University Press, 1997.
  • [11] V. Jurdjevic: Optimal control problems on Lie groups: Crossroads between geometry and mechanics. In B. Jakubczyk and W. Respondek (Eds.), Geometry of Feedback and Optimal Control, Marcel-Dekker, 1993.
  • [12] M. de Leon, J. C. Marrero and E. Martinez: Lagrangian submanifolds and dynamics on Lie algebroids. Journal of Physics A: Mathematical and General, 38(24), (2005), 241-308. DOI: 10.1088/0305-4470/38/24/R01
  • [13] J.C. Marrero: Hamiltonian dynamics on Lie algebroids, unimodularity and preservation of volumes. arXiv preprint arXiv:0905.0123v1, (2009). DOI: 10.48550/arXiv.0905.0123
  • [14] R. Bos: Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids. International Journal of Geometric Methods in Modern Physics, 4(3), (2007), 389-436. DOI: 10.1142/S0219887807002077
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55dc84a7-ccaa-4830-8c24-86755eeb5dcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.