Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work we study the invariant optimal control problem on Lie groupoids. We show that any invariant optimal control problem on a Lie groupoid reduces to its co-adjoint Lie algebroid. In the final section of the paper, we present an illustrative example.
Czasopismo
Rocznik
Tom
Strony
715--742
Opis fizyczny
Bibliogr. 14 poz., wzory
Twórcy
- Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Bibliografia
- [1] Gh. Haghighatdoost and R. Ayoubi: Hamiltonian systems on co-adjoint Lie groupoids. Journal of Lie Theory, 31(2), (2021), 493-516.
- [2] Gh. Haghighatdoost and R. Ayoubi: Euler integrable Hamiltonian system on co-adjoint Lie groupoids. ResearchGate publications, (2021).
- [3] Gh. Haghighatdoost and R. Ayoubi: Generalized geometric Hamilton-Jacobi theorem on Lie algebroids. arXiv: 1902.06969v1, (2019). DOI: 10.48550/arXiv.1902.06969
- [4] sc M. Jozwikowski: Optimal control theory on almost Lie algebroids. PhD dissertation, Institute of Mathematics, Polish Academy of Sciences, arXiv:1111.1549v1, 2011. DOI: 10.48550/arXiv.1111.1549
- [5] J. Grabowski and M. Jozwikowski: Pontryagin maximum principle on almost Lie algebroids. SIAM Journal on Control and Optimization, 49(3), (2011), 1306-1357. DOI: 10.1137/090760246
- [6] K.C.H. Mackenzie: General theory of Lie groupoids and Lie algebroids. London Mathematical Society, Lecture notes series 213, Cambridge University Press, Cambridge, 2005.
- [7] E. Martinez: Reduction in optimal control theory. Reports on Mathematical Physics, 53(1), (2004), 79-90. DOI: 10.1016/S0034-4877(04)90005-5
- [8] J. Baillieul and J.C. Willems: (Eds.) Mathematical Control Theory. Springer-Verlag New York, Inc. 1999.
- [9] H.J. Sussmann: Geometry and Optimal Control, Mathematical Control Theory. Book of essays a in honor of Roger W. Brockett on the o ccasion of his 60th birthday. J. Baillieul and J.C. Willems (Eds.), Springer-Verlag, 1998.
- [10] V. Jurdjevic: Geometric Control Theory. Cambridge University Press, 1997.
- [11] V. Jurdjevic: Optimal control problems on Lie groups: Crossroads between geometry and mechanics. In B. Jakubczyk and W. Respondek (Eds.), Geometry of Feedback and Optimal Control, Marcel-Dekker, 1993.
- [12] M. de Leon, J. C. Marrero and E. Martinez: Lagrangian submanifolds and dynamics on Lie algebroids. Journal of Physics A: Mathematical and General, 38(24), (2005), 241-308. DOI: 10.1088/0305-4470/38/24/R01
- [13] J.C. Marrero: Hamiltonian dynamics on Lie algebroids, unimodularity and preservation of volumes. arXiv preprint arXiv:0905.0123v1, (2009). DOI: 10.48550/arXiv.0905.0123
- [14] R. Bos: Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids. International Journal of Geometric Methods in Modern Physics, 4(3), (2007), 389-436. DOI: 10.1142/S0219887807002077
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55dc84a7-ccaa-4830-8c24-86755eeb5dcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.