
Journal of Applied Mathematics and Computational Mechanics 2019, 18(3), 107-117 

www.amcm.pcz.pl p-ISSN 2299-9965 

 DOI: 10.17512/jamcm.2019.3.10 e-ISSN 2353-0588 

CALCULATING STEADY-STATE PROBABILITIES 

OF SINGLE-CHANNEL QUEUEING SYSTEMS WITH CHANGES 

OF SERVICE TIMES DEPENDING ON THE QUEUE LENGTH 

Yuriy Zhernovyi 

1
, Bohdan Kopytko 

2
 

1 Ivan Franko National University of Lviv, Lviv, Ukraine 
2 Institute of Mathematics, Czestochowa University of Technology 

Częstochowa, Poland 

yu.zhernovyi@lnu.edu.ua, bohdan.kopytko@im.pcz.pl 

 

Received: 28 March 2019; Accepted: 15 April 2019 

Abstract. In this paper, we propose a method for calculating steady-state probabilities of 

the G/G/1/m and M/G/1/m queueing systems with service times changes depending of the 

number of customers in the system. The method is based on the use of fictitious phases and 

hyperexponential approximations with parameters of the paradoxical and complex type.  

A change in the service mode can only occur at the moment the service is started. We veri-

fied the obtained numerical results using the potential method and simulation models, con-

structed by means of GPSS World.  
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1. Introduction 

Models of queueing systems in which the intensity of service is purposefully 

changing along with the queue length, are often used to study telecommunication 

processes, in particular, processes of data transmission in ATM networks using multi- 

plexing technologies [1, 2]. Let us study the G/G/1/m system, at which the service 

time of each customer is determined by the rule: if at the moment of service start of 

this customer the number of customers in the system is n, its service time has the 

distribution function ( ).nF x  We denote such a system by G/G(n)/1/m where m  is the 

restriction on the queue length. A special case of the G/G(n)/1/m system is a system 

denoted by G/G(h)/1/m with a threshold change of service times, for which 

 ( ) ( ), 1 1; ( ) ( ), ; {2,3, , }.n nF x F x n h F x F x h n m h m       ɶ …  (1) 

A review of the results obtained for queueing systems with state dependent  

parameters can be found in [3]. In the work [4] the potentials method is proposed, 
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which allows one to obtain formulas, convenient for numerical realization, for 

steady-state distribution of the number of customers in the M/G(n)/1/m and 

M/G(h)/1/m systems with group arrivals of customers. 

Papers [5-7] suggest the use of hyperexponential approximation (denoted by 
kH ) 

for calculating of steady-state probabilities of the non-Markovian queueing systems. 

If variation coefficients 1V  and 2V  of distributions of the interarrival time between 

two consecutive customers and the service times satisfy the conditions 
1 2 0.6V V   

and 1 2max{ , } 2V V   then we are able to calculate steady-state probabilities with 

high accuracy (higher than in the case of using simulation models); see [7]. These 

probabilities are determined using solutions of a system of linear algebraic equations 

obtained by the method of fictitious phases. To find parameters of the kH -approxi- 

mation of a certain distribution, it is sufficient to solve the system of equations of 

the moments method. For the values 1V   of the variation coefficient, the roots of 

this system are complex-valued or paradoxical (i.e., negative or with probabilities 

that exceed the boundaries of the interval [0, 1]) but in most cases as a result of 

summation of probabilities of microstates, their complex-valued and paradoxical 

parts are annihilated. 

The purpose of the paper is to use of the hyperexponential approximation method 

for calculating steady-state probabilities of the G/G(n)/1/m and G/G(h)/1/m systems. 

We also consider the M/G(n)/1/m and M/G(h)/1/m systems for which results can be 

checked using the potentials method. 

2. Equations for steady-state probabilities of the Hl/Hr(n)/1/m, 

Hl/Hr(h)/1/m, M/Hr(n)/1/m and M/Hr(h)/1/m systems  

The hyperexponential distribution of order k  is a phase-type distribution and 

provides for choosing one of k  alternative phases by a random process. With  

probability iy , the process is at the i-th phase and is in it during an exponentially 

distributed time with a parameter .i  

Suppose that the times elapsed between two consecutive arrivals are independent 

random variables distributed according to the hyperexponential law ( 2)lH l   with 

probabilities s  and parameters (1 ),s s l    and the service time of each customer 

is distributed according to the hyperexponential law ( ) ( 2)rH n r   with probabilities 

ni  and parameters (1 ,1 ),ni n m i r      depending on the number n  of custom- 

ers in the system. A change in the service mode can only occur at the moment  

the service is started. The system under consideration is denoted by Hl/Hr(n)/1/m 

and will be used for an approximate calculation of the steady-state probabilities of 

the G/G(n)/1/m system. 

Let us enumerate the Hl/Hr(n)/1/m system’s states as follows: 0( )sx  corresponds 

to the empty system (that is 0n  ) and the time interval until the arrival of the first 

customer is in the phase s  (1 );s l   1( )s jx  is the state, when 1,n   the time interval 
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until the arrival of the next customer is in the phase s  (1 )s l   and j  is the phase 

number of service time, distributed according to the (1)rH  law; ( )k s ijx  is the state, 

when (2 1),n k k m     the time interval until the arrival of the next customer is 

in the phase s  (1 ),s l   i  is the number of the ( )rH i  law of service time distribu- 

tion (1 )i k m    and j  is the phase number of service time, distributed according 

to the ( )rH i  law. We denote by 0( ) 1( ),s s jp p  and ( )k s ijp  respectively, steady-state 

probabilities that the system is in the each of these states. To calculate 0( ) 1( ),s s jp p  

and ( )k s ijp  we obtain the system of linear equations:  

0( ) 1 1( )

1

2

1 1( ) 1 0( ) 1 2( )

1 1 1

1 2( 1 ) 1( )

1

1

( ) 1( )

1 1

0, 1 ;

( ) 0, 1 , 1 ;

( ) 0, 1 , 1 ;

( ) 0, 2

r

s s j sj

i

l r

s j sj j s u u j ui sui

u u i

l

s j s j s u uj

u

k r

s kj k skj kj ui k sui

u i

p p s l

p p p s l j r

p p s l j r

p p

 

      

   

   



  
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


 

    

        

       

    



 





 

( ) 1( )

1

( ) 1( )

1 1

1( ) ( ) 1( )

1

1, 1 , 1 ;

( ) 0,

3 , 1 , 1 1, 1 ;

( ) 0, 1 , 1 ;

( ) 0,

1 , 1 , 1

l

s ij k sij s u k uij

u

m r

s mj m smj mj ui m sui

u i

l

s ij m sij s u m uij m uij

u

k m s l j r

p p

k m s l i k j r

p p s l j r

p p p

s l i m

   

   

   





 

 


     

   
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   







1

0( ) 1( ) ( ) ( ) 1( )

1 1 1 2 1 1 1 1 1 1

;

1.
l l r m l r k l m r

s sj k sij k skj m sij

s s j k s j i s i j

j r

p p p p p



         

 

 
     

 
    

 (2) 

Solving the system (2), we find the steady-state probabilities 
kp  of the presence 

in the queueing system of k  customers using the formulas 

 

0 0( ) 1 1( ) 1 1( )

1 1 1 1 1 1

1

( ) ( )

1 1 1

, , ;

, 2 .

l l r l m r

s sj m m sij

s s j s i j

l r k

k k sij k skj

s j i

p p p p p p

p p p k m

 
     



  

  

 
    

 

  

 
 (3) 
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Let us consider the M/Hr(n)/1/m system that differs from the Hl/Hr(n)/1/m system  
 

in that the times elapsed between two consecutive arrivals are independent random  
 

variables exponentially distributed with parameter .  

Let us enumerate the M/Hr(n)/1/m system’s states as follows: 0x  corresponds to 

the empty system (that is 0n  ); 1( )jx  is the state, when 1n   j  is the phase number 

of service time, distributed according to the (1)rH  law; ( )k ijx  is the state, when 

(2 1),n k k m     i  is the number of the ( )rH i  law of service time distribution 

(1 )i k m    and j  is the phase number of service time, distributed according to 

the ( )rH i  law. We denote by 0 1( ), jp p  and ( )k ijp  respectively, steady-state probabili- 

ties that the system is in the each of these states. To calculate 
0 1( ), jp p  and ( )k ijp  

we obtain the system of linear equations:  

 

0 1 1( )

1

2

1 1( ) 1 0 1 2( )

1 1

1 2(1 ) 1( )

1

( ) 1( )

1 1

( ) 1( )
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( ) 0, 1 ;

( ) 0, 2 1, 1 ;
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r
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i
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
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
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




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1 1

1( ) ( )

1

0 1( ) ( ) ( ) 1( )
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1, 1 ;
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1.
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


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 

     

      

 
     

 



   

 (4) 

Solving the system (4), we find the steady-state probabilities kp  by the formulas 

 
1

1 1( ) ( ) ( ) 1 1( )

1 1 1 1 1

; , 2 ; .
r r k m r

j k k ij k kj m m ij

j j i i j

p p p p p k m p p


 
    

 
      

 
     (5) 

Let us consider the Hl/Hr(h)/1/m system in which the expedited service mode is  
 

used if, at the start of service of the customer, the number of customers in the system 

is not less than .h  The system states are numbered as follows: 0( )sx  corresponds to 

the empty system and the time interval until the arrival of the first customer is in 

the phase s  (1 );s l   ( )k s ix  is the state, when (1 1),n k k m     the time interval 
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until the arrival of the next customer is in the phase s  (1 )s l   and i  is the phase 

number of service time, distributed according to the rH  law with probability i  and 

intensity (1 );i i r    ( )k s ixɶ  is the state, when ( 1),n k h k m     the time interval 

until the arrival of the next customer is in the phase s  (1 )s l   and i  is the phase 

number of service time, distributed according to the 
rH  law with probability iɶ  

and intensity (1 ).i i r  ɶ  We denote by 0( ) ( ),s k sip p  and ( )k sipɶ  respectively, steady- 

state probabilities that the system is in the each of these states. To calculate 
0( ) ,sp  

( )k sip  and ( ) ,k sipɶ  we obtain the system of linear equations: 
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 (6) 

Solving the system (6), we find the steady-state probabilities kp  by the formulas 



Y. Zhernovyi, B. Kopytko 112

 

 

0 0( ) ( )

1 1 1

( ) ( )

1 1

; , 1 1;

, 1.

l l r

s k k si

s s i

l r

k k si k si

s i

p p p p k h

p p p h k m

  

 

    

    

 

 ɶ

 (7) 

Let us consider the M/Hr(h)/1/m system that differs from the Hl/Hr(h)/1/m  

system in that the times elapsed between two consecutive arrivals are independent 

random variables exponentially distributed with parameter .  The system states are 

numbered as follows: 0x  corresponds to the empty system; ( )k ix  is the state, when 

(1 1)n k k m     and i  is the phase number of service time, distributed accord- 

ing to the 
rH  law with probability i  and intensity (1 );i i r    ( )k ixɶ  is the state, 

when ( 1)n k h k m     and i  is the phase number of service time, distributed 

according to the 
rH  law with probability iɶ  and intensity (1 ).i i r  ɶ  We denote 

by 0 ( ), k ip p  and ( )k ipɶ  respectively, steady-state probabilities that the system is in 

the each of these states. To calculate 0 ( ), k ip p  and ( )k ipɶ  we obtain the system of  

linear equations: 
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Solving the system (8), we find the steady-state probabilities kp  by the formulas 

  ( ) ( ) ( )

1 1

, 1 1; , 1.
r r

k k i k k i k i

i i

p p k h p p p h k m
 
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3. Numerical results 

Let us present the results of calculating steady-state probabilities on examples 

of G/G(n)/1/10, M/G(n)/1/10, G/G(h)/1/15 and M/G(h)/1/15 systems. For times 

elapsed between two consecutive arrivals and service times we consider uniform 

distributions, labeled as ,U  and gamma distributions with coefficients of variation 

0.7,V   labeled as .  For calculations, we use the systems of linear equations for 

steady-state probabilities written for Hk/Hk(n)/1/10, M/Hk(n)/1/10, Hk/Hk(h)/1/15 and 

M/Hk(h)/1/15 systems respectively, using the order of approximation k  from 2 to 6 

for uniform and gamma distributions.  

Let ( )E T  and ( ( ))E T n  or ( ( ))E T h   and ( ( ))E T h   denote the mean of the 

times elapsed between two consecutive arrivals and the service times, respectively. 

Here ( )T h   and ( )T h   denote the service times for a usual and expedited service 

mode respectively. 

For the U/U(n)/1/10, Г/Г(n)/1/10, M/U(n)/1/10 and M/Г(n)/1/10 systems we take  

 ( ) 0.5, ( ( )) (11 )/10, 1 10;E T E T n n n       (10) 

the interval [0, 1]  for the uniform distribution of T , named ,U  and the intervals 

[0,(11 )/5]n  for the uniform distributions of the service times ( ),T n  named ( ).U n  

For the U/U(h)/1/15, Г/Г(h)/1/15, M/U(h)/1/15 and M/Г(h)/1/15 systems we take 

 ( ) 0.6, ( ( )) 1, ( ( )) 0.5, 7;E T E T h E T h h        (11) 

the interval [0, 1.2]  for the uniform distribution of T , named ,U  and the intervals 

[0,2]  and [0,1] for the uniform distributions of ( )T h   and ( )T h  , respectively, 

named ( ).U n  

To find parameters of the kH -approximation of a certain distribution with a given 

coefficient of variation, it is sufficient to solve the system of equations of the  

moments method only for the case of any one given mean value of this distribution 

since the roots of the equations of the moments method are invariant with respect 

to the scale transformation. As an example we give the parameters of 6H -approxi- 

mation of the uniform distribution on the interval [0,2]  
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1,2 1,2

3,4 3,4

5,6 5,6

0.319835 1.179031 , 2.515932 4.492673 ,

3.409262 12.719777 , 3.735708 2.626272 ,

3.589427 36.226047 , 4.248359 0.867510 ;

i i

i i

i i

 

 

 

   

   

   

∓  (12) 

and the gamma distributions with coefficient of variation 0.7V   and the mean 1: 

 

1 1 2 2

3 3 4 4

5,6 5,6

0.000809, 19.563118, 0.006791, 6.410937,

0.037377, 3.493911, 0.269433, 2.456711,

0.342795 69.581446 , 2.037657 0.016175 .i i

   

   

 

   

   

   

 (13) 

The obtained results are verified using simulation models constructed with the 

help of the GPSS World tools [8]. The results obtained using GPSS World slightly 

differ from one another for different numbers of library random-number generators 

used for simulating random variables, i.e., times elapsed between two consecutive 

arrivals and service times. Therefore, we use averaged results obtained using  

simulation models with different values of random-numbers generators that take  

on values of natural numbers from 6 to 10. Simulation time is equal to 65 10 .t    

Let us introduce the designation: N  is the average number of customers in the 

queueing system, and 

1 1 1

( ) ( ) ( ) ( , 1) ( ) ( 1) (6, ) (6) ( )

0 0 0

1 10

( ) ( ) ( ) ( ) ( , )

0 6

| |, | |, | |,

1
| |, , 0 1, 2 6.

5

m m m

k Pot j k j Pot k k j k j k k j j k

j j j

m

k sim j k j sim j sim j sim i

j i

p p p p p p

p p p p j m k

  

 
  



 

        

        

  

 
 

  (14) 

Here ( )j Potp  and ( )j kp  are values of probabilities jp  obtained using the potential 

method and kH -approximation respectively ( ( )j Pot jp p ); ( )j simp  is the average 

value of probabilities 
( , ) ,j sim ip  obtained by means of the simulation model using the 

number і of random-numbers generator for 6 10.i   Thus, the quantities ( )k Pot  

and ( )k sim  are measures of deviations of the distributions ( ){ }j kp  from distribu- 

tions ( ){ }j Potp  and ( ){ }j simp  respectively, and the quantities ( , 1)k k  and (6, )k  give 

an opportunity to estimate the deviation of distributions ( ){ }j kp  from distributions 

( 1){ }j kp   and (6){ }jp  respectively. 

In Tables 1 and 2 in the Appendix we present the results of the calculation  
 

of steady-state characteristics of the M/G(n)/1/10, M/G(h)/1/15 and G/G(n)/1/10,  
 

G/G(h)/1/15 systems respectively, with the considered uniform and gamma distri-

butions. The values of ( )k Pot  and (6, )k  (2 5)k   in Table 1 are either identical  
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or at least are numbers of the same order. This means that we can use values (6, )k  

to evaluate the accuracy of the approximation of the distribution ( ){ }j kp  to the true 

{ }jp  for 2 5.k   The values of deviations ( )k Pot  and (6, )k  decrease with increas- 

ing order of kH -distributions in approximations, as well as the values of ( , 1) ,k k  

which decrease with an increase of k  means that the values of distribution ( ){ }j kp  

with each step getting closer to a true distribution { }.jp  

Taking into account the values of deviations 6( )Pot  and (6,5) ,  we can state the 

high accuracy of the approach of steady-state distributions ( ){ } ( 5, 6)j kp k   to the 

true distribution for the considered systems. The order of values of deviations 
6( )Pot  

and (6,5)  varies from 10
–11

 to 10
–6 

and from 10
–8

 to 10
–4 

(in Table 2), respectively. 

For gamma distributions accuracy is higher than for uniform distributions. It is also  
 

higher for systems with the simplest input flow and for systems with queue length  
 

limit of 10m   compared to considered systems with alternative values of the 

specified parameters. 

Let 1V  and 2V  denote the variation coefficients of the times elapsed between two 

consecutive arrivals and the service times of a queueing system. For the queueing 

systems / ( )/1/10U U n  and / ( )/1/15U U h  with distributions having small coefficients 

of variation, namely, for the considered uniform distributions the condition 
1 2 1.2V V   

is fulfilled, a part of the probabilities of distribution { }jp  are less than 10
–4

, that is 

the distribution has a “tail”. As a consequence, the distributions (2){ }jp  contain the 

pseudo-probabilities with negative values. Therefore, the results for these systems 

in the case 2k   are not displayed in the tables. 

Comparison of distributions 
( ){ }j kp  with distributions ( ){ }j simp  obtained using 

the simulation model, for 3k   does not provide objective information about the 

approach of ( ){ }j kp  to the true distribution { },jp  since the minimum values of the 

deviation of the distribution ( ){ }j simp  from the true distribution have the order 10
–4

 

or 10
–3

 and in most cases the results obtained by the method of kH -approximation 

have higher accuracy for specified values of .k  

4. Conclusions 

This paper shows that the application of hyperexponential approximation of  

distributions of the interarrival time between two consecutive customers and the 

service times allow us to calculate steady-state probabilities of the non-Markovian 

single-channel queueing systems with service times changes depending of the 

number of customers in the system, with high accuracy (higher than in the case of 

using simulation models). We find these probabilities using solutions of a system 

of linear algebraic equations obtained by the method of fictitious phases.  
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To obtain parameters of kH -approximation of a certain distribution, it is neces- 

sary to solve the system of equations of the moments method. For the values 1V   

of the variation coefficient, some of the roots of this system are complex-valued or, 

having a sense of probabilities, go beyond the interval [0, 1] , but in most cases  

the final result is close to the desired distribution { }.jp  

Computing deviations 
( , 1)k k  and (6, )k  allows us to track the accuracy of ap- 

proaching distributions ( ){ }j kp  to the true distribution { }jp  without the need to use 

simulation models. 
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Appendix 

Table 1. Results of the calculation of steady-state characteristics of the M/G(n)/1/10 and 

M/G(h)/1/15 systems with different G-distributions 

G-distribution 

name 

Characteristic 

name 

Method of calculation and values of characteristics 

Approximation using kH  Potential 

method k = 2 k = 3 k = 4 k = 5 k = 6 

( )U n  

N  6.0125 6.0137 6.0137 6.0137 6.0137 6.0137 

( )k Pot  8.83·10
–3

 4.14·10
–4

 2.26·10
–5 

1.53·10
–6

 1.17·10
–7

 – 

( , 1)k k  – 8.46·10
–3

 4.02·10
–4

 2.23·10
–5 

1.60·10
–6

 – 

(6, )k  8.83·10
–3

 4.14·10
–4

 2.27·10
–5

 1.60·10
–6

 – – 

( )n  

N  6.0170 6.0171 6.0171 6.0171 6.0171 6.0171 

( )k Pot  6.81·10
–5

 7.50·10
–7

 2.02·10
–8

 9.11·10
–10

 5.05·10
–11

 – 

( , 1)k k  – 6.84·10
–5

 7.50·10
–7

 2.01·10
–8

 8.92·10
–10

 – 

(6, )k  6.81·10
–5

 7.50·10
–7

 2.02·10
–8

 8.92·10
–10

 – – 

( )U h  

N  8.8570 8.8322 8.8325 8.8325 8.8325 8.8325 

( )k Pot  0.0123 8.78·10
–4

 6.94·10
–5

 5.23·10
–6

 3.11·10
–7

 – 

( , 1)k k  – 0.0123 8.92·10
–4

 7.18·10
–5

 5.44·10
–6

 – 

(6, )k  0.0123 8.78·10
–4

 6.93·10
–5

 5.44·10
–6

 – – 

( )h  

N  8.9647 8.9645 8.9645 8.9645 8.9645 8.9645 

( )k Pot  9.98·10
–5

 1.59·10
–6

 5.32·10
–8

 2.30·10
–9

 1.33·10
–10

 – 

( , 1)k k  – 9.98·10
–5

 1.57·10
–6

 5.16·10
–8

 2.24·10
–9

 – 

(6, )k  9.98·10
–5

 1.59·10
–6

 5.32·10
–8

 2.24·10
–9

 – – 

Table 2. Results of the calculation of steady-state characteristics of the G/G(n)/1/10 and 

G/G(h)/1/15 systems with different G-distributions 

G/G-distribution 

name 

Characteristic 

name 

Method of calculation and values of characteristics 

Approximation using kH  GPSS 

World k = 2 k = 3 k = 4 k = 5 k = 6 

/ ( )U U n  

N  – 6.3314 6.3312 6.3312 6.3311 6.3310 

( )k sim  – 0.0037 0.0007 0.0004 0.0004 – 

( , 1)k k  – – 3.11·10
–3

 4.35·10
–4 

1.72·10
–4

 – 

(6, )k  – 3.53·10
–3

 5.71·10
–4

 1.72·10
–4

 – – 

/ ( )n   

N  6.2536 6.2536 6.2536 6.2536 6.2536 6.2532 

( )k sim  0.0003 0.0004 0.0004 0.0004 0.0004 – 

( , 1)k k  – 2.38·10
–4

 2.68·10
–6

 3.75·10
–8

 1.11·10
–8

 – 

(6, )k  2.35·10
–4

 2.68·10
–6

 3.96·10
–8

 1.11·10
–8

 – – 

/ ( )U U h  

N  – 8.4555 8.4520 8.4516 8.4519 8.8325 

( )k sim  – 0.0043 0.0013 0.0010 0.0009 – 

( , 1)k k  – – 3.82·10
–3

 6.65·10
–4

 2.10·10
–4

 – 

(6, )k  – 4.48·10
–3

 8.27·10
–4

 2.10·10
–4

 – – 

/ ( )h   

N  8.8398 8.8395 8.8395 8.8395 8.8395 8.8408 

( )k sim  0.0006 0.0007 0.0007 0.0007 0.0007 – 

( , 1)k k  – 2.47·10
–4

 4.54·10
–6

 2.02·10
–7

 2.06·10
–8

 – 

(6, )k  2.46·10
–4

 4.49·10
–6

 2.05·10
–7

 2.06·10
–8

 – – 
 


