PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of stream power in the instability and morphological changes of Haji Arab River, Buin Zahra (Qazvin Province, Iran)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The stream power is one of the important river variables which is used in morphological analysis. Therefore, the stream power determines both erosion and deposition. This research examines the stream power, instability and morphometric changes of the channel using the annual geomorphic energy (AGE) in Haji Arab River in Buin Zahra (Qazvin Province). The AGE is calculated by integrating the relationship between the excess specific stream power and discharge using a flow duration curve. The AGE values for each reach should be either positive or negative. Therefore, according to the differentials in AGE values, depositional and erosional reach are determined. In this paper, the results of the AGE method were compared with the rapid geomorphic assessments (RGA), including the channel stability indicators (CSI) model and OSEPI index. Also, the RHS method based on the field works was used to identify depositional and erosional geomorphic landforms. Comparing the results of the AGE with rapid RGA indices, shows that results of the OSEPI are more consistent with the erosional and depositional status of the reaches, based on the AGE. Spatial variations in lithology and structure, when combined with the course of the Haji Arab River indicate that channel morphometry locally reflects geological factors that have caused slope differences in different reaches. The calculated AGE values at different cross-sections have significant variability, reflecting characteristic local variation in bed slope, cross-section geometry and bed-sediment composition.
Czasopismo
Rocznik
Strony
25--35
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Shahid Beheshti University, Shahriari Square, Evin, 1983969411 Tehran, Iran
  • Shahid Beheshti University, Shahriari Square, Evin, 1983969411 Tehran, Iran
  • Shahid Beheshti University, Shahriari Square, Evin, 1983969411 Tehran, Iran
  • Shahid Beheshti University, Shahriari Square, Evin, 1983969411 Tehran, Iran
Bibliografia
  • Andrews, E.D., 1983. Entrainment of gravel from naturally sorted riverbed material. Geological Society of America Bulletin 94, 1225–1231.
  • Bagnold, R.A., 1977. Bed Load Transport in Natural Rivers. Water Resources Research 13, 303–312.
  • Belletti, B., Rinaldi, M., Buijse, A.D., Gurnell, A.M., Mosselman, E., 2014. A review of assessment methods for river hydromorphology. Environmental Earth Sciences 73, 2079–2100.
  • Bizzi, S., Lerner, D., 2015. The use of stream power as an indicator of channel sensitivity to erosion and deposition processes. River Research Applications 31, 16–27.
  • Bull, W.B., 1979. Threshold of critical power in streams. Geological Society of America Bulletin 90, 453–464.
  • Buraas, E., Renshaw, C., Magilligan, F., Dade, W., 2014. Impact of reach geometry on stream channel sensitivity to extreme floods. Earth Surface Processes and Landforms 39 (13), 1778–1789.
  • Chorley, R., Standly, A., David, S., 1984. Geomorphologhy (1st ed). Mehuen and Co, London, 316–341.
  • Darby, S.E., Rinaldi, M., Dapporto, S., 2007. Coupled simulations of fluvial erosion and mass wasting for cohesive river banks. Journal of Geophysical Research 112, F03022, doi:10.1029/ 2006JF000722.
  • Downs, P.W., Dusterhoff, S., Leverich, G., Soar, P.J., Napolitano, M., 2018. Fluvial system dynamics derived from distributed sediment budgets: perspectives from an uncertainty-bounded application. Earth Surface Processes and Landforms 43 (6), 1335–1354.
  • Eaton, B., Church, M., 2011. A rational sediment transport scaling relation based on dimensionless stream power. Earth Surface Processes and Landforms 36, 901–910.
  • Ferguson, R.I., 2005. Estimating critical stream power for bedload transport calculations in gravel‐bed rivers. Geomorphology 70, 33–41.
  • Hafez, Y., 2000. Response theory for alluvial river adjustment to environmental and man-made changes. Journal of Environmental Hydrology 8, 1–19.
  • Heeren, D.M., Mittelstet, A. R., Fox, G.A., Storm, D.E., Al-Madhhachi, A.T., Midgley, T.L., Stringer, A.F., Stunkel, K.B., Tejral., R.D., 2012. Using rapid geomorphic assessments to assess streambank stability in Oklahoma Ozark streams, American Society of Agricultural and Biological Engineers 55(3), 957–968.
  • Hooke, J., 2003. Coarse sediment connectivity in river channel systems: A conceptual framework and methodology. Geomorphology 56, 79–94.
  • Hosseinzadeh, M.M., Esmaili, R., Matesh Byranvand, S., 2020. Analysis of channel bank erosion rate using exposed roots of trees: a case study of lavij stream, northern Alborz Mountains, Iran. Journal of Mountain Science 17(5), 1096–1105.
  • Jain, V., Preston, N., Fryirs, K., Brierley, G., 2006. Comparative assessment of three approaches for deriving stream power plots along long profiles in the upper Hunter River catchment, New South Wales, Australia. Geomorphology 74, 297–317.
  • Kale, V., 2007. Geomorphic effectiveness of extraordinary floods on three large rivers of the Indian Peninsula, Geomorphology 85(3), 306–316.
  • Kondolf, G.M., Piégay, H., 2003. Tools in Fluvial Geomorphology, 2nd Edition, Wiley-Blackwell, ISBN: 978-0-470-68405-4, 560 pp.
  • Lane, E.M., 1955. The importance of fluvial morphology in hydraulic engineering. American Society of Civil Engineers 81, 1–17.
  • Leopold, L.B., Bull, W.B., 1979. Base level, aggradation, and grade. Proceedings of the American Philosophical Society 123, 168–202.
  • Mackin, J.H., 1948. Concept of the graded river. Geological Society of America Bulletin 59, 463–512.
  • Meshkova, L.V., Carling, P.A., 2012. The geomorphological characteristics of the Mekong River in northern Cambodia: A mixed bedrock– alluvial multi-channel network. Geomorphology 147–148, 2–17.
  • Minghui, Y., Hongyan, W., Yanjie, L., Chunyan, H., 2010. Study on the Stability of Noncohesive River Bank. International Journal of Sediment Research 25(4), 391–398.
  • Newson, M.D., 1992. Geomorphic thresholds in gravel‐bed rivers. In: Billi, P., Hey, R.D., Thorne, C.R., Tacconi, P. (Eds), Dynamics of Gravel‐Bed Rivers. John Wiley & Sons: Chichester, UK, 3–15.
  • Nupur, B., Vikrant, J., Shashank, S., Niraj, K., Vikas, J., 2014. Controls on Morphological Variability and Role of Stream Power Distribution Pattern, Yamuna River, western India. Geomorphology 227, 60–72.
  • Parker, C., Thorne, C.R., Clifford, N.J., 2015. Development of ST:REAM: A reach‐based stream power balance approach for predicting alluvial river channel adjustment. Earth Surface Processes and Landforms 40, 403–413.
  • Reinfelds, I., Cohen, T., Batten, P., Brierley, G., 2004. Assessment of downstream trends in channel gradient, total and specific stream power: A GIS approach. Geomorphology 60, 403–416.
  • Sear, D.A., Newson, M.D., Brookes, A., 1995. Sediment‐related river maintenance: The role of fluvial geomorphology. Earth Surface Processes and Landforms 20, 629–647.
  • Soar, P.J., Wallerstein, N.P., Thorne, C.R., 2017. Quantifying River Channel Stability at the Basin Scale. Water 9, 133–164.
  • Thorne, C.R., Soar, P.J., Skinner, K.S., Sear, D.A., Newson, M.D., 2010. Driving processes II. Investigating, characterising and managing river sediment dynamics. In: Sear, D.A., Newson, M.D., Thorne, C.R. (Eds), Guidebook of Applied Fluvial Geomorphology. Thomas Telford: London, UK, 120–195.
  • Tokaldany, E., Darby, S., Tosswell, P., 2007. Coupling Bank Stability and Bed Deformation Models to Predict Equilibrium Bed Topography in River Bends. Journal of Hydraulic Engineering 133, 1167–1170.
  • Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., Cushing, C.E., 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
  • Wallerstein, N.P., Soar, P.J., Thorne, C.R., 2006. River Energy Auditing Scheme (REAS) for catchment flood management planning. In: Proceedings of the IAHR River Flow, Lisbon, Portugal., 6–8 September.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55d8920a-4fbf-4002-b0f6-df327ec89b64
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.