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Abstract 
In this paper, we introduce our newly created DEAR (an abbreviation of Differential Equation Associated 
Regression) theory, which merges differential equation theory, regression theory and random fuzzy variable 
theory into a new rigorous small sample based inferential theoretical foundation. We first explain the underlying 
idea of DEAR modelling, its classification, and then the M-estimation of DEAR model. Furthermore, we explore 
the applicability of DEAR theory in the analysis in system dynamics, for example, repairable system analysis, 
quality dynamics analysis, stock market analysis, and ecosystem analysis, etc.  
 
1. Introduction 
 

In real world, many phenomena can be abstracted into 
mathematical dynamic systems. Differential equation 
theory provides many effective models for system 
dynamics. The focus of a system dynamics should be 
the characteristics intrinsic to the system and its 
evolving or developing patterns. To achieve this goal, 
the investigation on the system ought to base on the 
data extracted from the system itself. In other words, it 
is critical to utilize the sample data to test and validate 
hypothesized system model. 
However, it is a well known fact that sampling from a 
system is usually a difficult task and an expensive 
exercise. Therefore, inference on the system dynamics 
based on small sample becomes an urgent and 
elementary task. Small sample inference has already 
obtained attention to many researchers, for example, in 
probability theory, the small sample asymptotics see 
[4], [5], the Bayesian inference, in fuzzy set theory 
proposed by Zahed [18], [19], the plausible inference, 
and particularly, in the grey system theory proposed by 
Deng [2], small sample inference is its flashing feature. 
In this paper, to address the dilemma of using 
differential equation for describing continuous system 
dynamics, while only a small discrete data sequence 
sampled from the system is available, we propose 
Differential Equation Associated Regression, 
abbreviated as DEAR, model. DEAR theory couples 

differential equation and regression together Guo et al 
[12] with delicate approximation schemes. However, 
these approximations introduce additional errors, 
which are identified as fuzzy error terms in nature. 
Thus, the coupled regression in DEAR theory is a 
random fuzzy regression.   
 
2. Nonlinear thinking of DEAR 
 

Without loss of generality, a simple linear differential 
equation: 
 

  dx x
dt

α β= +  (1)

  
will be used in this paper for illustrative purpose. Let 

( )1ˆix  denote an approximation to the primitive function 
( )x t  at , and let it i ix tΔ Δ be an approximation to the 

derivative function dx dt  at , with , and     it 1i i it t t −Δ = −
 
   ( ) ( )1i i ix x t x t −Δ = − .  
 
Definition 2.1: If a dynamic system governed by (1) is 
sampled at its derivative level, denoted by 

( ) ( ) ( ) ( ){0 0 0 0
1 2, , , n }X x x x= , the coupled equation system 
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is called Type I DEAR model.  
 
Definition 2.2: If a dynamic system governed by (1) is 
sampled at its primitive level, denoted by 

( ) ( ) ( ) ( ){1
1 2, , , n }X x t x t x t= , the coupled equation 

system 
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is called Type II DEAR model. 
Note that the second equation in the paired equation 
system like (2) and (3) is called coupled regression, 
while the first one, i.e., the differential equation is 
called the associated differential equation. 
Now, Let us examine Type I DEAR model first. The 
system dynamics is governed by the linear differential 
equation dx dt xα β= + , or equivalently, nonlinear 
functional . If the sample could be very 
large, it is possible to perform a non-linear statistical 
modelling in term of standard maximum likelihood 
procedure to estimate system parameter

( ) ( ); ,x t f t α β=

( ),θ α β= . 
However, if only small sample observations are 
available, the “best” modelling exercise is to fit a 
simple regression model ( ) 0 1ˆ ˆx̂ t tγ γ= +  , called 
primitive regression, for approximating the system 
dynamics . Figure 1 shows that the 
blue-dot straight line

( ) ( ); ,x t f t α β=

( ) 0 1ˆ ˆx̂ t tγ γ= +  will poorly 
approximate nonlinear curve  in the ( ) ( ); ,x t f t α β=

( ),t x  space (or ( -coordinate system). ),t x
 From the fitting of the coupled regression, 

, the estimator of parameter ( ) ( )0 1ˆi ix xα β ε= + + i

( , )θ α β= , denoted by ( )ˆ ˆ ,θ α β= ˆ

)

 is obtained. Now, in 

the ( , 'x x  space, we fit straight line ˆˆ ˆˆ'x xα β= +  to 
approximate the straight line 'x xα β= + .  It is obvious 
this model goodness-of-fit could be very good even 
with small sample. 
 
 
 
 
 
 

 
 

Figure 1. Two approximations to nonlinear curve 
 in (  space ( ) ( ); ,x t f t α β= )

}

,t x

Let us consider the case where sampling observations, 
( ) ( ) ( ) ( ){0 0 0 0

1 2, , , nX x x x= , are collected at derivative 

level. By a linear transformation, approximations to 
primitive function level observations are obtained, 
denoted by ( ) ( ) ( ){ }1 2ˆ ˆ, , , nx t x t x t" , say, by partial sum. 
In terms of Type I DEAR model thinking, we first fit 
the coupled regression, i.e., the second equation in 
DEAR equation system in (2) in the ( ), 'x x  space (or 

( , ')x x -coordinate system), where 'x denotes the 
derivative of x  with respect to t , i.e., 'x dx dt= . 
 

 
     Figure 2. Type I approximation in ( ), 'x x  space 
 
Once the parameter ( ),θ α β=  is obtained, by solving 
the approximated linear differential equation 

ˆˆdx dt xα β= + , we will obtain an approximated 

nonlinear curve , (yellow-colored 

curve in Figure 1), which is expected to approximate 
the primitive curve in relatively high accuracy. 

( )( 1
0

ˆˆ' ; , ,x t xϕ α= )β
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Figure 3. Type II approximation in ( ), 'x x  space 

Let us consider the case in which the sampling 
observations are collected at primitive function level, 
denoted as ( ) ( ) ( ) ( ){ }1

1 2, , , nX x t x t x t= . Then in 
terms of DEAR Type II model thinking, the derivatives 
could be approximated, for example, by the divided 
difference, i.e., i ix tΔ Δ , or other approaches 
available. Just as shown in Figure 3, fitting 

ˆˆ ˆ'x x t xα β=Δ Δ = +  for approximating 
line 'x xα β= + . Similarly, the estimated parameter  

( )ˆ ˆ, ˆθ α β=  will lead the nonlinear approximation 

 to the primitive function 

 in (  space (shown in Figure 1).  

( )( 1
0

ˆˆ' ; , ,x t xϕ α= )β
( ) ( ); ,x t f t α β= ),t x

It is necessary to emphasize here that DEAR model is 
often starting with hypothesized differential equation 
model for a system dynamics and then obtaining the 
corresponding coupled regression. The converse 
direction is also possible. In other words, after a 
regression model is established based on the small 
sample data extracted from an unknown system 
dynamics, an appropriate differential equation is 
selected according to the Coupling Principle stated in 
Guo et al [12] and then the DEAR model is built up. 
For example, a set of system data ( ){ }, 1,2, ,ix t i n=  
is collected and a fitted regression model takes the 
form 
 

  ( ) ( ) ( ) ( )0ˆ mi
i i

i

x
ix t x t

t
α β

Δ
= = +

Δ
x t  (4)

 
Then, the associated differential equation is a Bernoulli 
equation of the form: 
 

  ( )2( ) mdx p t x q t x
dt

+ =  (5)

 
Then a Type II DEAR model is established 
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It should be fully aware that the solution to the 
estimated Bernoulli equation 
 

  ˆˆ mdx x x
dt

α β= +  (7)

 
which results in a solution 
 

 ( ) ( )( )( ) ( ) ( )1ˆ 11
1

ˆˆˆ; , 1 ,  0,1
ˆ

m t tmt e c t mαβ
ϕ α β

α
− −−= − + ≠

)j

 (8)

 

for facilitating the nonlinear approximation to the true 
system dynamics . ( ); , ,x f t α β γ=
 
2. Random fuzzy variable foundation for 
DEAR 
In order to achieve the target of nonlinear modeling 
with small sample, DEAR utilizes various 
approximations. Type I DEAR model utilizes the 
approximation of an integral (i.e., primitive function) 

by partial sum, ( ) ( )( 1
2

ˆ '
i

i i i
j

x t x t t t −
=

= −∑  and Type II 

DEAR model relies on the approximation of a 
derivative, ( )' ix t , by divided difference, 

( ) ( )( ) ( )1 1i i i ix t x t t t− −− − . 
The approximation brings error, which is fuzzy in 
nature according to nonclassical mathematical analysis. 
The total error term, i i eiε ζ= + , in coupled regression 
will come from two error sources: random sampling 
error, denoted by e , and the approximation-caused 
fuzzy error, denoted by ζ . Therefore, the coupled 
regression is a random fuzzy variable regression. 
Therefore, we need to have some knowledge of 
random fuzzy variable theory.  
Random fuzzy variable is a special case of hybrid 
variable defined in a chance space proposed by Liu 
[15], which is a Cartesian product of a probability 
space and a credibility space for describing hybrid 
events in which randomness and fuzziness coexist.  
 
Definition 3.1: (Liu, [16]) Let  be a 

credibility measure space and (
( , 2 ,CrΘΘ )

), , PrAΩ  a probability 

space. The product ( )  is called a 
chance space. 

(, 2 ,Cr , ,PrAΘΘ × Ω )
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)

)
Typically, the product ( )  may be 

written as ( . The Cartesian 
product space  is typically defined by  

(, 2 ,Cr , ,PrAΘΘ × Ω

, 2 ,Cr PrAΘΘ×Ω × ×

Θ×Ω

( ){ }, : ,θ ω θ ωΘ×Ω = ∈Θ ∈Ω  and the Cartesian 

product σ -algebra { }2 : 2 ,A B A BΘ × × ∈ ∈A= AΘ , 

which is a special σ -algebra constituted by events 
with product form . Note here that 

 is the power set of space 
,  2 ,A B A BΘ× ∈ ∈A

2Θ Θ , which is the largest 
σ -algebra of set Θ , while A  is just a σ -algebra of 
set . Therefore,  is a Ω 2Θ ×A σ -algebra of set 

, but a very special one. As to  which is a 
product measure of the two essential uncertain 
measures: credibility measure and probability measure. 
Nevertheless, the product measure may take different 
forms. One of them, which satisfies the requirements 
of uncertainty measure proposed by Liu [15], is called 
the chance measure, denoted as

Θ×Ω Cr Pr×

{ }Ch , which is 
composed of the two essential measures: credibility 
measure and probability measure.  
 
Definition 3.2: (Liu, [16]) Let ( )  
be a chance space and an (measurable) event of form 

(, 2 ,Cr , ,PrAΘΘ × Ω )

Z X Y= ×  such that 
{ } { }: :Z X Yθ θ ω ω Θ= ∈ ⊂ Θ × ∈ ⊂ Ω ∈ ×A2 ,  

then a chance measure is defined as: 
 
 

{ }
{ } ( ){ }( ) { } ( ){ }( )
{ } ( ){ }( ) { } ( ){ }( )

sup Cr Pr if sup Cr Pr 0.5
Ch

1 sup Cr Pr if sup Cr Pr 0.5c

Z Z
Z

Z
θ θ

θ θ

θ θ θ θ

θ θ θ θ
∈Θ ∈Θ

∈Θ ∈Θ

⎧ ∧ ∧
⎪= ⎨
− ∧ ∧ ≥⎪

⎩
Z

<  
(9)

 
If the product measure Cr Pr×  is defined by the 
chance measure defined in Definition 2.9, i.e., 

{} {}Cr Pr Ch× ⋅ = ⋅ , then the chance measure space 

 may be written as ( ) (, 2 ,Cr , ,PrAΘΘ × Ω )

( ), 2 ,ChΘΘ×Ω ×A . 
 
Definition 3.3: (Liu, [16]) Let ( ), 2 ,ChΘΘ×Ω ×A  be a 
chance space. A hybrid variable 

( ): ,2 ,Chξ ΘΘ×Ω × →RA  is a measurable function 

from the chance space into a set of real numbers. In 
other words, for any Borel set of real numbers, 

, event 

. 

( )B∈ RB

( ) ( ){ }, : , 2Bθ ω ξ θ ω Θ∈Θ×Ω ∈ ∈ ×A

The typical examples of hybrid variables are fuzzy 
random variable and random fuzzy variable.  Liu, see 
[15], [16], defines a random fuzzy variable as a 
measurable mapping from the credibility space 

( ),2 ,CrΘΘ  to a set of random variables.  Again, we 
should be aware that a random fuzzy variable here 
takes real numbers as its values, which behaves very 
similar to a random variable.  
 
Definition 3.4: Let ( ), 2 ,ChΘΘ×Ω ×A  be a chance 
space and ξ be a hybrid variable. Then the chance 
distribution ( ) [ ]: ,2 ,Ch 0Θϒ Θ×Ω × →A ,1  for ξ if and 

only if: 
 

( ) ( ) ( ){ } = Ch , : ,x xθ ω ξ θ ωϒ ∈Θ×Ω ≤  (10)

 
Theorem 3.5: (Liu, [16]) Let ( ), 2 ,ChΘΘ×Ω ×A  be a 

chance space. A function  is a chance 
distribution for a hybrid variable 

[: 0,ϒ →R ]1
ξ  if and only if: 

 

( ) ( )
( ) ( ) ( ) ( )

lim 0.5 lim

lim   =  if lim  0.5 or 0.5 
x x

y x y x

x x

y x y x
→−∞ →+∞

↓ ↓

ϒ ≤ ≤ ϒ

ϒ ϒ ϒ > ϒ ≥
 (11)

 

Definition 3.6: (Liu, [16]) Let ( ), 2 ,ChΘΘ×Ω ×A  be a 

chance space and ( )ϒ ⋅ be the chance distribution for a 
hybrid variableξ , a function [ ): 0,ϕ → +∞R  is called 
as a chance density if and only if: 
 

  
( ) ( )

( )

d

d  = 1

x

x y y

y y

ϕ

ϕ

−∞

+∞

−∞

ϒ = ∫

∫
 (12)

 

Definition 3.7: Let ( ), 2 ,ChΘΘ×Ω ×A  be a chance 

space and ( )ϒ ⋅ be the chance distribution for a hybrid 
variableξ . The chance distribution is absolutely 
continuous if and only if the chance density 

( )ϒ ⋅

( )ϕ ⋅ is 
continuous.  
The discussions of the chance distribution ( )ϒ ⋅ will be 
limited in the class of absolutely continuous chance 
distributions. 
 
Theorem 3.8: Let ( ), 2 ,ChΘΘ×Ω ×A  be a chance 

space and ( )ϒ ⋅ be the chance distribution for a hybrid 
variableξ , which is absolutely continuous. Then: 
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( ) ( )
( ) ( )

0,  1

 if ,  ,x y x y x y

ϒ −∞ = ϒ +∞ =

ϒ < ϒ < ∀ ∈R
(13)

 

Furthermore, the inverse function of {}ϒ ⋅ exists and is 
denoted as .  ( )1−ϒ ⋅
 
Definition 3.9: (Liu, [15]) Let ( ), 2 ,ChΘΘ×Ω ×A  be a 
chance space and ξ be a hybrid variable. Then the 
expected value of ξ  is defined by: 
 

   [ ] { } { }
0

0

E Ch d Chr r r rξ ξ ξ
+∞

ϒ
−∞

= ≥ − ≤∫ ∫ d (14)

 

Let [ ]Ee ξϒ= , then the variance is defined as 

.  [ ] ( )2EV eξ ξϒ ϒ
⎡ ⎤= −⎣ ⎦

Finally, let us discuss the average hance measure 
concept given by Liu [16].  
 
Definition 3.10: Let ( ) (, 2 ,Cr , ,PrAΘΘ × Ω )  be a 
chance space and ξ  be a random fuzzy variable, then 
the average chance distribution is  
 

 ( ) { } ( ){ }{ }
1

0

ch Cr :Pr , dx x xξ θ ξ ω θ βΨ = ≤ = ≤ ≥∫ β  (15)

 

and the average chance density is a positive 
function  such that :ψ +→R R
 

  ( ) ( )d
x

x u uψ
−∞

Ψ = ∫  (16)

 

If the product measure Cr Pr×  is defined by the 
average chance measure defined in (10), i.e., 

{} {}Cr Pr ch× ⋅ = ⋅ , then the average chance measure 

space ( ) (, 2 ,Cr , ,PrAΘΘ × Ω )  may be written as 

. ( ), 2 ,chAΘΘ×Ω ×

The error structure in the dear modelling theory is 
assumed to be random fuzzy 
 

  eε τ= +  (17)
 

which is the fuzzy approximation error to the 
derivative and 

e
τ is the random error term. 

For inference purposes, similar to statistical linear 
model theory, it is typically assumed that the random 

error is normal variable with zero-mean and constant 
variance, i.e., ( )20,Nτ σ∼ . 
However, the fuzzy error is intrinsically dependent 
upon point

e
x , the difference on x when using divided 

difference to approximate derivative at point x . Let 
be assumed to be a triangular fuzzy variable with a 

membership having parameter 
e

( ), ,x a x x b− + , 
, 0, 0a b> >

 

  ( )
0        otherwise

e

u x a x a u x
a

b u xu x u
b

μ

− +⎧ − < ≤⎪
⎪

− +⎪ x b= < ≤ +⎨
⎪
⎪
⎪⎩

 (18)

 

Accordingly, the credibility distribution function of 
fuzzy error at pointe x is 
 

  ( )
( )
0         if 

if 
2

  if 
2
1          if 

e x a
e x a

x a e x
ae

e b x x e x b
b

e x b

≤ −⎧
⎪ − −⎪ − ≤ <
⎪Λ = ⎨

+ −⎪ ≤ < +⎪
⎪ ≥ +⎩

 (19)

 

Then the average chance distribution of normal 
random fuzzy error term ε  at point x takes a form 
 

 

( ) ( )

( ) ( )

( )

( )

( )
2

2

( )d ( )d
2 2

x a x

x x b

x a x a x
a

x b xb x x
b

u u u u u u
a b

ε ε
σ σ

ε ε
σ σ

ε ε εε
σ σ

ε εε ε
σ σ σ

σ σφ φ

− − −

− − +

⎛ ⎞− − − −⎛ ⎞ −⎛ ⎞Ψ = Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− + − +⎛ ⎞ ⎛+ − −⎛ ⎞+ Φ −Φ +Φ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

− −∫ ∫

b ⎞
⎟
⎠ (20)

 

and the average chance density is 
 

( )

( ) ( )

( )

( ) ( )

( ) ( )

1( )
2

2

1
2

1
2

1 ( )
2

x a x
a

x a x a x
a

x bx
b

x bb x x
b

x a x a
a

ε εψ ε
σ σ

ε ε εφ φ
σ σ σ

εε
σ σ

ε εε εφ φ φ
σ σ σ σ σ

ε ε εφ
σ σ

⎛ ⎞− −⎛ ⎞ −⎛ ⎞= Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− − − −⎛ ⎞ −⎛ ⎞+ −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞− +⎛ ⎞−⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞− + − +⎛ ⎞ ⎛+ − −⎛ ⎞+ − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

− − − − −
− −

x b ⎞

( ) ( )1
2

x x

x b x bx x
b

εφ
σ σ

ε εε εφ φ
σ σ σ σ

⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞− + − +⎛ ⎞− −⎛ ⎞− −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

(21)

 

i.e.,  
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( ) ( )

( )

1
2

1
2

x a x
a

x bx
b

ε εψ ε
σ σ

εε
σ σ

⎛ ⎞− −⎛ ⎞ −⎛ ⎞= Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− +⎛ ⎞−⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (22)

 

 
where ( )φ ⋅ and ( )Φ ⋅ are the probability density function 
and cumulative distribution function of standard 
normal random variable respectively.   
 
4. M-Estimator for DEAR parameters 
Assuming that the system is sampled at system 
primitive function level, ( )x t , the n observation is 

denoted by ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1
1 2, , , nX x t x t x t= " , then a 

Type II model of dear subfamily takes a form 
 

   

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

−+++=

=

++=+

)()(

)(

)1(2
210

)1(

2
210

kkk

k

k
k

txbtqtqq

Dt
tDxy

tqtqqbx
dt
dx

                      (23) 

 
According to Liu’s Maximum Uncertainty Principle 
[16], for independent random fuzzy variables, the 
object function can be formed in the following way,  

 

  ( )

( )( )(( )
0 1 2

2
2

0 1 2
2

, , , ; , ,

0.5
n

h k k k k
k

J q q q a b

y q q t q t x

β σ

β
=

= Ψ − + + + − −∑ )
 

(24)

 

Denote  ( )2
0 1 2k k k k iy q q t q t xε β= − + + −

 

  

( )

( )( ) ( )

( )( ) ( ) ( )

0 1 2 3

2

2

, , , ; , ,

2 0.5

2 0.5

i

n

k k
k i

n
k

k k
k i

J a bθ θ θ θ σ
θ

ε ε
θ

ε
ε ψ ε

θ

=

=

∂
∂

∂
= Ψ − Ψ

∂

∂
= Ψ − =

∂

∑

∑ 0

 (25)

 
Then M-functional equation system is then 

 

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( )( ) ( )
( )

20

21

2

22

2

2 2

2 0.5 0

2 0.5 0

2 0.5 0

2 0.5 0

0.5 ( )d
2 2

k k

k k

n

k k
k

n

k k k
k

n

k k k
k

n

k k k
k

x a

k kk k k k
k

k x

J
q
J t
q
J t
q
J x

x ax xJ u u u
a a a

ε
σ

ε
σ

ε ψ ε

ε ψ ε

ε ψ ε

ε ψ ε
β

εε ε σε φ
σ σ

=

=

=

=

− −

−

∂
= − Ψ − =

∂

∂
= − Ψ − =

∂

∂
= − Ψ − =

∂

∂
= Ψ − =

∂

⎛ ⎞
⎛ ⎞− −⎛ ⎞⎜ ⎟− −∂ ⎛ ⎞= Ψ − Φ −Φ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

∑

∑

∑

∑

∫

( )( ) ( )
( )

2

2 2
2

0

0.5 ( )d 0
2 2

0

k k

k k

n

x
n

k kk k k k
k

k x b

x bx xJ u u u
b b b

J

ε
σ

ε
σ

εε ε σ
ε φ

σ σ
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−
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⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
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⎨
⎪
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⎪
⎪
⎪

⎛ ⎞⎪ ⎛ ⎞− +⎛ ⎞⎜ ⎟− −∂ ⎛ ⎞⎪ = Ψ − Φ −Φ + =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎪ ∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎜ ⎟⎪ ⎝ ⎠⎪
∂⎪ =⎪ ∂⎩

∑

∑ ∫
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where 
 

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )

2
2

2
2

2
2

0.5
2

0.5
2

0.5

n
k k k k k k

k k k
k

n
k kk k k k

k k k k k
k

n
k k k k

k
k

x a x a xJ x a
a

x bb x x
x x b

b

x b x b

ε ε ε
ε ε φ φ

σ σσ

εε ε
ε ε φ ε φ

σ σσ

ε ε
ε φ

σσ

=

=

=
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− + − +⎛ ⎞
− Ψ − ⎜ ⎟

⎝ ⎠

−

∑

∑

∑

( )( )

σ

( )
( )

( )( ) ( ) ( )
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⎟
⎟

∑
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Then, the solution to the M-equation (non-linear) 
equation system, denoted as ( )0 1 2

ˆˆˆ ˆ ˆ ˆ ˆ, , , , , ,q q q a bβ σ , is 

called an M-estimator of Subfamily A of dear model. 
Particularly, ( )0 1 2

ˆˆ ˆ ˆ ˆ, , ,T q q q βΓ =  is the M-estimator for 

the coefficients defining the motivated differential 
equation.   
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∑
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Define  
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( )
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2

2
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x bx b x
b

x b

ε ε
σ σ

ε ε
σ σ

σ σε φ

ε ε
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εε
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ε
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− − +

= +

⎛ ⎞− −⎛ ⎞− −⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞− +⎛ ⎞− −⎛ ⎞+ Φ −Φ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

− +⎛ ⎞
+ −Φ⎜ ⎟
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∫ ∫ φ

 (29)

 

then  
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k  ( ) ( ) ( )0.5k k k gε ε ψ ε εΨ − = −  (30)
 

Further define 
 

  2
0 1 2

ˆˆ ˆ ˆ ˆk k ky q q t q t xkβ= + + −  (31)
 

Denote 
 

( )
( )

( )

( )
( )

( )

2
2 22 2 2

2
3 313 3 3

2

0 01
0 01

,  ,  ,  

0 01n n nn n n

y gt t x
y gt t x

y X W g

y gt t x

ψ ε ε2

3ψ ε ε

ψ ε ε

−

⎡ ⎤⎡ ⎤−⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ − ⎢ ⎥⎢ ⎥⎢ ⎥= = = =⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

"
"

# # # % ## # # #
"

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

#

 
(32)

 

(28) can be written as an adjusted weighted normal 
equation form 

 

  T T TX W X X W y X g− −Γ = +2 1  (33)
 

Finally, the coefficient M-estimator  satisfies the 
adjusted weighted normal equation (33), which is 
expected to play critical roles in the variance-
covariance estimation for the M-estimator 

Γ̂

Γ̂  by 
noticing that 

 

( ) ( )ˆ T T T TX W X X W y X W X X g
− −− − −Γ = +
1 12 1 2  (34)

 

Remark 4.1: The M-estimator for coupled differential 
equation coefficients actually specify the dynamics 
fully. However, we need to be aware that Γ̂  itself is a 
random fuzzy vector because the random fuzzy nature 
of  the “observations” { }ky . 
 
5. Applicability of DEAR model 
 

DEAR model in nature revealing the intrinsic changing 
dynamics of a continuous system. The final 
mathematical structure is an estimated differential 
equation for approximating the true dynamics. 
Therefore DEAR model may apply to any system 
governed by differential equation(s).   
 
5.1. Repair effect estimation 
 

Repairable system analysis and maintenance 
optimization are a problem to reveal the law of the 
system functioning dynamics and the evaluation of 
repair effects in terms of system performance data in 
statistical sense. It is noticeable that another class of 
system maintenance optimization papers appeared in 
journals and conferences, however, most of them are 
seeking “system optimum” under mathematical 
assumptions without justifications in terms of actual 
system performances. It is obvious the later models are 
in mathematical sense. 
The repairable system dynamics in DEAR platform 

assumes that a system is governed by differential 
equation (either single one or a set of equations), say 

( ;T f t θ= ) . Due to various internal and external 
causes, system demonstrates a repeated pattern of 
functioning, stop, repairing, and resuming function 
again, Guo [9], [10], [11]. As an illustration, let us 
assume the system dynamics is governed by 
 

  dT T T
dt

α β γ= + +2  (35)

 
Then from system functioning time records, denotes as 

( ) ( ) ( ){ }1 2, , , nT t T t T t . Then the DEAR system is 
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i
i i

i

dT T
dt
T T t T t
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⎨Δ⎪ ε= + + +
Δ⎪⎩

2

 
(36)

 

Let ( ) ( )( )diag i
i i

i

T
W T t T t

t
δ α β γ−
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2
2

1
1

1

# # # # (37)

 
Then the M-estimator for Π  is 
 

  ( )ˆ T TX W X X W Y
−− −Π =
11 1  (38)

 
Hence the approximate Riccati equation takes the form 
 

  ˆˆ ˆdT T T
dt

α β γ= + +2  (39)

 

Denote the solution to Eq. (33) by ( )ˆ ˆ,T tϕ= Π , which 

will be used to approximate the true system 
functioning dynamics ( ,T f t )= Π . Also denote the 
“weighted” residual by  resulting from Eq. (36). 
Define the residual  

ˆw
ie

 

  ( ) ( ) ( )( )ˆˆ ˆî i i ie T t T t T tα β γ= − + +  (40)
 
The actual function time can be partitioned into three 
terms: 
 

  ( ) ( )ˆ ˆ ˆw
i i i iT t T t e r+ +  (41)=

 

It is obvious that the fitted dynamics ( )ˆ
iT t  and 

weighted residual  are DEAR-explained. Notice that ˆw
ie
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The term  is DEAR-unexplained quantity. 
Therefore the logical interpretation of   is repair 
effect (accumulated at time ). In general,  
are random fuzzy quantities so that the parameters for 
the average chance distribution of { }  can be 
obtained. 

ˆ ˆ ˆw
i i ir e e= −

îr

it { }ˆ ˆ ˆ, , , nr r r1 2 "

ˆ ˆ ˆ, , , nr r r1 2 "

 
5.2. DEAR predictive quality control charts 
 

Carvalho and Machado [1] (2006) pointed, “In a global 
market, companies must deal with a high rate of 
changes in business environment. … The parameters, 
variables and restrictions of the production system are 
inherently vagueness.” In other words, the shortening 
product life cycle and diversification have brought the 
vagueness and randomness together, which is a form of 
hybrid uncertainty, into manufacturing systems. 
Therefore, the traditionally continuous production and 
large sample based quality control schemes may not be 
suitable. Therefore establishing small sample oriented 
approximate quality index differential equation in 
terms of DEAR theory, which enjoys highly predictive 
power will help quality assurance in today’s industries 
greatly. 
Guo [8], Guo and Dunne [14] have explored the 
predictive quality control schemes in terms of grey 
differential equation model. The DEAR-predictive 
control schemes will avoid the weakness in earlier 
work and offer a more rigorous development.  
 
5.3. Ecosystem modelling 
 

Climate changes have posed high risk on earth 
ecosystems [17]. Environmental research communities 
now successfully convince governmental leaders 
worldwide and let the climate change become a hot 
topic. Biodiversity evolution is also a system dynamics 
governed by complicated differential equation systems. 
The critical issue is the parameter estimation for the 
differential equation systems. Biodiversity researchers 
have managed initial success in terms of multivariate 
version of DEAR model – PDEAR, for example, Guo, 
D. et al [6], [7], and Guo, R. et al [13]. Predictably, 
DEAR modeling in ecosystem will get more and more 
attention in the future. 
 
6 Concluding remarks and open question 
 

In this paper we introduce a new small sample based 
continuous differential equation modeling theory. We 
use a simple linear equation in (1) for illustrative 
purposes, however, as we pointed out that DEAR 
contains a collection of rich families. Table 1 offers a 
collection of partial families in Type II DEAR model.  
 
 

Table 1. The richness of DEAR families 
 

Family Type II DEAR 
 

Family 1 
( )

0 1

0 1

           

k
k k

k

dx x
dt
x

x t
t

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪Δ⎩

 

 
Family 2 

( )

0 1

0 1

             

k

t

tk
k k

k

dx e x
dt
x

e x t
t

δ

δ

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩
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( )

( ) ( )

0 1

0 1

sin               

sink
k k

k

dx t x
dt
x

t x t
t

α ω ϖ α

kα ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + + +
⎪Δ⎩

 

 
Family 4 

( )

( ) ( )

0 1

0 1

sin                

sink

t

tk
k k

k

dx e t x
dt
x

e t x t
t

δ

δ

α ω ϖ α

kα ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + + +
⎪ Δ⎩

 

 
Family 5 

( )

( ) ( )

0 1

0 1

             q

k
q k k k

k

dx p t x
dt
x

p t x t
t

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪Δ⎩

 

 
Family 6 

( )

( ) ( )

0 1

0 1

              

k

t
q

tk
q k k k

k

dx e p t x
dt
x

e p t x t
t

δ

δ

α α

α α ε

⎧ = +⎪⎪
⎨Δ⎪ = + +
⎪ Δ⎩

 

 
Family 7 

( ) ( )

( ) ( ) ( )

0 1

0 1

sin               

sin

q

k
q k k k k

k

dx p t t x
dt
x

p t t x t
t

α ω ϖ α

α ω ϖ α ε

⎧ = + +⎪⎪
⎨Δ⎪ = + + +
⎪ Δ⎩

 

 
However, there are many open questions and many 
challenges in future DEAR developments. The first 
one is model specification (or identification) problem. 
It is true that DEAR model starts with a hypothesized 
differential equation model. Given real-world dynamic 
system, it is often there is no priori knowledge on the 
system and thus many possible candidate differential 
equation models may be suitable for the hypothesized 
model. Which one would be the best? We can not 
guarantee anything, particularly under the small 
sample availability. The second question is the model 
validation problem, which can be considered from the 
two aspects: the filtering the existing data (or backward 
prediction) and the extrapolation (or forward 
prediction). In either case, model accuracy criteria are 
required to be investigated, particularly, we have to 
admit that the average chance of quadratic forms and 
ratio of them are undeveloped yet. The third open 
question is given a set of data, the DEAR model may 
just start with a set of subset regression models and 
then couple with corresponding differential equation 
models. For example, Table 2 lists a set of data from a 
system. 
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Table 2. A system state recording data 

No Time 
 kt

Obs ( ) ( )1
kx t  Approx. Der. 

( ) ( )0ˆ kx t  
Der. 
( ) ( )0

kx t  
1 0.50 7.1788 N/A  
2 0.55 7.1236 -1.104573 -1.0198 
3 0.60 7.0768 -0.935078 -0.8504 
4 0.65 7.0385 -0.765817 -0.6813 
5 0.70 7.0087 -0.596785 -0.5123 
6 0.75 6.9873 -0.427976 -0.3436 
7 0.80 6.9743 -0.259385 -0.1752 
 

For this data set, Table 3 lists 10 sub-regression models 
with excellent R-square value and significant 
regression coefficients.  
  
Table 3: 10 fitted sub-regression models 

No SUB-REGRESSION FITTED 2R  

1 
( )(0.001122) 0.00165

2.9636 3.380732y t= − +  0.99999 

2 
( ) ( )3.9293678 0.5585406

37.534371 5.432364y x= −  0.95943 

3 
( ) ( ) ( )

2

0.000129 0.000387 0.000286
2.98385 3.44172 0.01458y t t= − + −  1.00000 

4 
( ) ( ) ( )0.0011942 0.0000979 0.0001605
2.76468 3.36477 0.02674y t= − + − x  1.00000 

5 
( ) ( ) ( )

2

0.0002931 0.0000456 0.0000053
2.86031 3.36499 0.00187y t x= − + −  1.00000 

6 
( ) ( ) ( ) ( )

2

1.0591 08 3.7187 09 2.1831 09 1.2924 09
1.165377 1.984874 0.810084 0.506302

E E E E
y t t

− − − −
= + + − x  1.00000 

7 
( ) ( ) ( ) ( )

2

0.01040532 0.00646298 0.00380509 0.00015769
2.761762 3.303776 0.036038 0.003366y t t= − + + − 2x  1.00000 

8 
( ) ( ) ( ) ( )

2 2

0.01330144 0.00001955 0.00373362 0.00026212
7.0753757 1.9749804 1.2682231 0.0050625y t x x= + − +

 

1.00000 

9 
( ) ( ) ( ) ( )

2

0.0000347 0.0167259 0.0046466 0.0003216
2.951019 0.626354 1.180800 0.087259y t tx= − − + − tx  1.00000 

10 
( ) ( ) ( )

2

287.0542 81.4615 5.7791
1255.3080 351.0223 24.5172y x= − + x  0.99420 

 

As a matter of fact, the true system dynamics is close 
to sub-regression 6 is 
 

  2
0 11.20 2.0 0.80 - 0.50dx q q t t

dt
= + + x  (42)

 

But the data-fitted differential equation is 
 

  
( ) ( ) ( ) (

2

1.0591 08 3.7187 09 2.1831 09 1.2924 09
1.165377 1.984874 0.810084 0.506302

E E E E

dx t t
dt − − − −

= + + −
)
x  (43) 
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