PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metoda oceny elementów infrastruktury drogowej z uwzględnieniem potrzeb i specyfiki różnych grup użytkowników

Autorzy
Identyfikatory
Warianty tytułu
EN
The method of evaluation of road infrastructure elements considering the needs and specify of different groups of users
Języki publikacji
PL
Abstrakty
PL
W monografii pod pojęciem infrastruktury drogowej autor rozważa obiekty budowlane, po których odbywa się transport osób i towarów w zakresie gałęzi transportu drogowego. Wprowadzono i zdefiniowano kluczowe dla prowadzonych rozważań pojęcia, takie jak: element infrastruktury drogowej, jego rodzaje (węzeł i odcinek międzywęzłowy) oraz części, grupa użytkowników, trasa, środek lokomocji, opis i ocena warunków ruchu. Dokonano zestawienia stanu wiedzy z zakresu poruszanych zagadnień w rozbiciu na: przegląd zagadnień z zakresu opisu elementu infrastruktury, znaczenie sygnalizacji drogowej w ocenie warunków ruchu i tendencje wykorzystania metod heurystycznych w ocenie elementów infrastruktury drogowej. Na bazie tego podsumowania określono autorski wkład w dziedzinę projektowania i oceny elementów infrastruktury drogowej. Sformułowano trzy tezy oraz sprecyzowano cel i zakres monografii. Podstawowym osiągnięciem monografii jest skonstruowanie uniwersalnej metody opisu elementów infrastruktury drogowej. Oprócz ujęcia tradycyjnych wielkości charakteryzujących geometrię drogi oraz ruch jej użytkowników uwzględniono rolę wymagań poszczególnych grup użytkowników. Analizy różnych grup użytkowników, w tym podróżujących w pojazdach transportu zbiorowego, pieszych i rowerzystów, wymagały stworzenia zestawu zunifikowanych wielkości i związanych z nimi jednostek. Skonstruowano metodę oceny elementu infrastruktury drogowej bazującą na autorskim modelu obejmującym opis elementu infrastruktury oraz poszczególne grupy użytkowników. W metodzie oceny wykorzystano oryginalny zestaw funkcji oraz uwarunkowań dopasowany do charakteru rozwiązywanych zadań. Metoda nadaje się do korygowania sposobów obliczania przepustowości i warunków oceny ruchu drogowego z rozwinięciem ich na wszystkie grupy użytkowników. Kompleksowy opis wszystkich części elementu infrastruktury pozwala także na ocenę wariantów realizacji, bądź zagospodarowania. Istotnym osiągnięciem pracy jest wykorzystanie metod grupowania rozmytego do kalibracji parametrów funkcji oceny oraz algorytmów genetycznych, jako nowoczesnych i efektywnych narzędzi rozwiązywania zadań oceny elementów infrastruktury. Na przykładach pokazano użyteczność skonstruowanego modelu oraz efektywność autorskiej metody oceny, także na tle dotychczas stosowanych metod i włączywszy w to zbudowane narzędzia komputerowe. Dodatkowo pokazano, że modyfikując konkretne elementy metody, takie jak: wagi, parametry funkcji oceny i jej postać, uwzględnia się różne stopnie priorytetów dla określonych grup użytkowników stosownie do formułowanych przez nich preferencji oraz oczekiwań decydentów.
EN
In the monograph, the term of road infrastructure means the construction object (structure), on which is the transportation of people and goods in the road transport branch. The key concepts, such as: road infrastructure element, its types and parts (node and intersection segment) groups of users, route, means of transport, description and evaluation of traffic conditions are introduced. The state of knowledge, divided into: a review of the infrastructure description issues, the importance of traffic signals in the evaluation of traffic conditions, as well as the trends in the use of heuristic methods in the evaluation of road infrastructure is pointed. On the basis of this summary, the contribution of Author to the field of design and evaluation of road infrastructure is determined. Three specific thesis, the aim and the scope of the monograph are formulated. The main achievement of the monograph is to provide the universal method for the description of road infrastructure. In addition to the recognition of traditional quantities characterizing the geometry of the road and the movement of the users, the role of the requirements of individual users group is considered. Analysis of different users groups, including travelers in vehicles or in public transport means, pedestrians and cyclists, required a unified set of the quantities and related units. The method of evaluation of road infrastructure elements, based on the model including description of the infrastructure and each groups of users is constructed. The original set of functions and conditions tailored to the nature of the considered problems been taken into account. The method is suitable for correct the ways to calculate the capacity and the traffic conditions for all the groups of users. A complex description of all the parts of an infrastructure element allows also the evaluation of options or management. An important achievement of the monograph is the use of the fuzzy clustering method to calibrate the parameters of the evaluation functions, and use of the genetic algorithms, as the modern and effective tools for solving the problems of infrastructure element evaluation. The examples demonstrate the usefulness and effectiveness of the constructed model, the author’s method of evaluation, also against the background of previous methods, and including the constructed computer tools. In addition, it is shown that by modifying the specific elements of the method, such as: weights, the parameters of the evaluation functions and their forms, take into account the different degrees of priority to certain groups of users formulated according to their preferences and expectations of policymakers.
Twórcy
autor
  • Instytut Inżynierii Lądowej Politechniki Wrocławskiej, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
Bibliografia
  • [1] Adeli H., Karim A., Fuzzy-wavelet RBFNN model for freeway incident detection, Journal Of Transportation Engineering, November/December 2000.
  • [2] Ahuja R.K., Orlin J.B., Pallottino S., Scutellà M.G., Minimum Time and Minimum Cost-Path Problems in Street Networks with Periodic Traffic Lights, Transportation Science, 2002, Vol. 36, No. 3, 326–336.
  • [3] Akçelik R., Bennett S., Felton A., Pedestrian movement characteristics at signalized intersections, 23rd Conference of Australian Institutes of Transport Research (CAITR 2001), Monash University, Melbourne, Australia, 10–12 December 2001.
  • [4] Ali Y.M., Zhang Liangchi, A methodology for fuzzy modeling of engineering systems, Fuzzy Sets and Systems, 2001, 118, 181–197.
  • [5] Allsop R.E., Delay minimising settings for fixed-time traffic signals at a single road junction, Journal of the Institute of Mathematics and its Applications, 1971, 8 (2), 164–185.
  • [6] Allsop R.E., SIGSET: a computer program for calculating traffic signal settings, Traffic Engineering and Control, 1971, 13 (2), 58–60.
  • [7] Allsop R.E., Estimating the traffic capacity of a signalized road junction, Transportation Research, 1972, 6 (3), 245–255.
  • [8] Allsop R.E., Delay at a fixed time traffic signal I: theoretical analysis, Transportation Science, 1972, 6 (3), 260–285.
  • [9] Allsop R.E., Computer program SIGCAP for assessing the traffic capacity of signal-controlled road junctions – description and manual for users, Transportation Operations Research Group Working Paper, Vol. 11, University of Newcastle upon Tyne, 1975.
  • [10] Allsop R.E., Charlesworth J.A., Traffic in a signal-controlled road network: an example of different signal timings including different routings, Traffic Engineering Control, 1977, 18 (5), 262–264.
  • [11] Allsop R.E., Computer program SIGSET for calculating delay-minimising traffic signal timings – description and manual for users, Transport Studies Group Research Report, University College London 1981.
  • [12] Alonso I.P., Llorca D.F., Sotelo M.Á., Bergasa L.M., de Toro P.R., Nuevo J., Ocaña M., Garrido M.Á.G., Combination of Feature Extraction Methods for SVM Pedestrian Detection, IEEE Transactions on Intelligent Transportation Systems, June 2007, Vol. 8, No. 2.
  • [13] Astarita V., Bertini R.L., d`Elia S., Guido G., Motorway traffic parameter estimation from mobile phone counts, European Journal of Operational Research, 2006, 175, 1435–1446.
  • [14] Athanassoulis G.C., Calogero V., Optimal location of a new highway from A to B – A computer technique for route planning, PTRC Seminar Proceedings on Cost Models and Optimization in Highways (Session L9), London 1973.
  • [15] Aultman-Hall L., Hall F., Baetz B., Analysis of bicycle commuter routes using geographic information systems: Implications for bicycle planning, Transportation Research Record: Journal of the Transportation Research Board, No, 1578, TRB, National Research Council, Washington, DC., 1997, 102–110.
  • [16] Azimi Z.N., Hybrid heuristics for Examination Timetabling problem, Applied Mathematics and Computation, 2005, 163, 705–733.
  • [17] Bajerowski T., Niepewność w dynamicznych układach przestrzennych, Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego, Olsztyn 2003.
  • [18] Beckmann M.J., McGuire C.B., Winsten C.B., Studies in the Economics of Transportation, Yale University Press, New Haven 1956.
  • [19] Belitsky V., Krug J., Neves E.J., Schütz G.M., A Cellular Automaton Model for Two-Lane Traffic, Journal of Statistical Physics, 2001, Vol. 103, No. 5/6.
  • [20] Bell M.G.H., Future directions in traffic signal control, Transport. Res., 1992, 26, 303–313.
  • [21] Ben Shahar H., Mazor A., Pines D., Town planning and welfare maximization: a methodological approach, Regional Studies, 1969, 3, 105–113.
  • [22] Bergendahl G., Models for investments in a road network, Bonniers, Stockholm 1969.
  • [23] Bernhoft I.M., Carstensen G., Preferences and behaviour of pedestrians and cyclists by age and gender, Transportation Research, Part F, 2008, 11, 83–95.
  • [24] Białynicki-Birula I., Białynicka-Birula I., Modelowanie rzeczywistości, Prószyński i S-ka, Warszawa 2002.
  • [25] Bień J., Modelowanie obiektów mostowych w procesie ich eksploatacji, Wydawnictwo Politechniki Wrocławskiej, 2002.
  • [26] Boarnet M.G., Sarmiento S., Can land-use policy really affect travel behavior? A study of the link between non-work travel and land-use characteristics, Urban Studies, 1998, 35, 1155–1169.
  • [27] Bonneson J.A., Lane volume and saturation flow rate for multilane intersection approach, Journal of Transportation Engineering, 1998, 124 (3), 240–245.
  • [28] Bovy P., Bradley P., Route choice analyzed with stated preference approaches, Transportation Research Record 1037, TRB, National Research Council, Washington, D.C. 1985.
  • [29] Broek van den M.S., van Leeuwaarden J.S. H., Adan I.J.B.F., Boxma O.J., Bounds and Approximations for the Fixed-Cycle Traffic-Light Queue, Transportation Science, November 2006,Vol. 40, No. 4, 484–496.
  • [30] Burhardt K.K., Urban traffic system optimization, Ph.D. Dissertation, University of Minnesota, Minneapolis, Minnesota 1971.
  • [31] Burrow I.J., OSCADY: a computer program to model capacities, queues and delays at isolate traffic signal junctions, TRRL Report, Vol. 105, Transport and Road Research Laboratory, Crowthorne 1987.
  • [32] Caird J.K., Chisholm S.L., Edwards C.J., Creaser J.I., The effect of yellow light onset time on older and younger drivers’ perception response time (PRT) and intersection behavior, Transportation Research, Part F, 2007, 10, 383–396.
  • [33] Cannon M., Kouvaritakis B., Huang G., Modelling and optimization for sustainable development policy assessment, European Journal of Operational Research, 2005, 164, 475–490.
  • [34] Cantarella G.E., Pavone G., Vitetta A., Heuristics for urban road network design: Lane layout and signal settings, European Journal of Operational Research, 2006, 175, 1682–1695.
  • [35] Cervero R., Gorham R., Commuting in transit versus automobile neighborhoods, Journal of the American Planning Association, 1995, 61, 199–219.
  • [36] Ceylan H., Bell M.G.H., Traffic signal timing optimization based on genetic algorithm approach, including drivers’ routing, Transportation Research, Part B, 2004, 38, 329–342.
  • [37] Ceylan H. Developing Combined Genetic Algorithm—Hill-Climbing Optimization Method for Area Traffic Control, Journal of Transportation Engineering, August 2006.
  • [38] Chakroborty P., Genetic algorithms for optimal urban transit network design, Computer Aided Civil and Infrastructure Engineering, 2003,
  • [39] Chan C.Y., Characterization of Driving Behaviors Based on Field Observation of Intersection Left-Turn Across-Path Scenarios, IEEE Transactions on Intelligent Transportation Systems, September 2006, Vol. 7, No. 3, 322–331.
  • [40] Chang T.H., Lin J.T., Optimal signal timing for an oversaturated intersection, Transportation Research, Part B, 2000, 34, 471–491.
  • [41] Chapra S.C., Canale R.P., Numerical Methods for Engineers, McGraw-Hall, Inc., New York 1988.
  • [42] Cheng S.F., Epelman M.A., Smith R.L. CoSIGN: A Parallel Algorithm for Coordinated Traffic Signal Control, IEEE Transactions on Intelligent Transportation Systems, December 2006, Vol. 7, No. 4.
  • [43] Chew E.P., Goh C.J., Fwa T.F., Simultaneous optimization of horizontal and vertical alignments for highways, Transportation Research, Part B, 1989, 23 (5), 315–329.
  • [44] Chien S., Yang Z., Hou E., Genetic algorithm approach for transit route planning and design, Journal of Transportation Engineering, May/June 2001.
  • [45] Chiou Yu-Chiun, Lan Lawrence W., Genetic clustering algorithms, European Journal of Operational Research, 2001, 135, 413–427.
  • [46] Chmielewski J., Model rozkładu potoków pasażerskich na linie transportu publicznego, Praca Doktorska (niepublikowana), Akademia Techniczno Rolnicza Bydgoszcz, 2002.
  • [47] Chow A.H.F., Lo H.K., Sensitivity analysis of signal control with physical queuing: Delay derivatives and an application, Transportation Research, Part B, 2007, 41, 462–477.
  • [48] Chung K., Rudjanakanoknad J., Cassidy M.J., Relation between traffic density and capacity drop at three freeway bottlenecks, Transportation Research, Part B, 2007, 41, 82–95.
  • [49] Clay M.J., Johnston R.A., Multivariate uncertainty analysis of an integrated land use and transportation model: MEPLAN, Transportation Research, Part D, 2006, 11, 191–203.
  • [50] Coifman B., Vehicle Level Evaluation of Loop Detectors and the Remote Traffic Microwave Sensor, Journal of Transportation Engineering, March 2006.
  • [51] Coifman B., Krishnamurthy S., Vehicle re identification and travel time measurement across freeway junctions using the existing detector infrastructure, Transportation Research, Part C, 2007, 15, 135–153.
  • [52] Cronje W.B., Optimization model for isolated signalized traffic intersections, Transportation Research Record, 1983, 905, 80–83.
  • [53] Cyrson E. (red.), Kompendium wiedzy o gospodarce. Wybór ekonomiczny, Wydawnictwo Naukowe PWN, Warszawa–Poznań 1996.
  • [54] Dans G., Gazis D.C., Optimal control of oversaturated store-and-forward transportation networks, Transportation Science, 1976, 10 (1), 1–19.
  • [55] Datka S., Suchorzewski W., Tracz M., Inżynieria ruchu, WKiŁ, Warszawa 1999.
  • [56] Demirli K., Molhim M., Fuzzy dynamic localization for mobile robots, Fuzzy Sets and Systems, 2004, 144, 251–283.
  • [57] Depreitere B., Van Lierde C., Maene S., Plets Ch., Vander Sloten J., Van Audekercke R., Van der Perre G., Goffin J., Bicycle-related head injury: a study of 86 cases, Accident Analysis and Prevention, 2004, 36, 561–567.
  • [58] Devillez A., Billaudel P., Lecolier G.V., A fuzzy hybrid hierarchical clustering method with a new criterion able to find the optimal partition, Fuzzy Sets and Systems, 2002, 128, 323–338.
  • [59] Dharia A., Adeli H., Neural network model for rapid forecasting of freeway link travel time, Engineering Applications of Artificial Intelligence, 2003, 16, 607–613.
  • [60] Dickson T.J., A note on traffic assignment and signal timings in a signal-controlled road network, Transportation Research, 1981, 15B (4), 267–271.
  • [61] Dill J., Carr T., Bicycle commuting and facilities in major U.S. cities: If you build them, commuters will use them – another look, Transportation Research Board, National Research Council, Washington, DC, 2003.
  • [62] Dimitriadou E., Weingessely A., Hornikz K., A combination scheme for fuzzy clustering, International Journal of Pattern Recognition and Artificial Intelligence, 2002, Vol. 16, No. 7, 901–912.
  • [63] Dinopoulou V., Diakaki Ch., Papageorgiou M., Applications of the urban traffic control strategy TUC, European Journal of Operational Research, 2006, 175, 1652–1665.
  • [64] Dion F., Rakha H., Kang Y.S., Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections, Transportation Research, Part B, 2004, 38, 99–122.
  • [65] Dion F., Hellinga B., A rule-based real-time traffic responsive signal control system with transit priority: application to an isolated intersection, Transportation Research, Part B, 2002, 36, 325–343.
  • [66] Drakopoulos A., Ornek E., Use of vehicle-collected data to calculate existing roadway geometry, Journal of Transportation Engineering, March/April 2000.
  • [67] Drakopoulos A., Lyles R.W., Preferences for permitted and protected left-turn signal displays, Journal of Transportation Engineering, May/June 2000, 202–211.
  • [68] Durango-Cohen P.L., A time series analysis framework for transportation infrastructure management, Transportation Research, Part B, 2007, 41, 493–505.
  • [69] Dźwigoń W., Analiza efektywności środków poprawy jakości w komunikacji miejskiej, Praca doktorska (niepublikowana), Politechnika Krakowska, 2004.
  • [70] Easa S.M., Selection of roadway grades that minimize earthwork cost using linear programming, Transportation Research, Part A, 1988, 22 (2), 121–136.
  • [71] Elahi S.M., Radwan A.E., Goul K.M., Knowledge-based system for adaptive traffic signal control, Transportation Research Record, 1991, 1324, 115–122.
  • [72] Elbeltagi E., Hegazy T., Grierson D., Comparison among five evolutionary-based optimization algorithms, Advanced Engineering Informatics, 2005, 19, 43–53.
  • [73] Fang C., Elefteriadou L., Pecheux K.K., Pietrucha M.T., Using fuzzy clustering of user perception to define levels of service at signalized intersections, Journal of Transportation Enginerring ASCE, November/December 2003, 657–663.
  • [74] Fang C., Elefteriadou L., Development of an Optimization Methodology for Adaptive Traffic Signal Control at Diamond Interchanges, Journal of Transportation Engineering, August 2006.
  • [75] Felici G., Rinaldi G., Sforza A., Truemper K., A logic programming based approach for on-line traffic control, Transportation Research, Part C, 2006, 14, 175–189.
  • [76] Foy M.D., Benekohal R.F., Goldberg D.E., Signal timing determination using genetic algorithms, Transportation Research Record 1365 TRB, National Research Council, Washington, DC, 1992, 108–115.
  • [77] Friends of Oregon, Making the Land Use Transportation Air Quality Connection, vol. 4A: The Pedestrian Environment, LUTRAQ, with Cambridge Systematics, Inc., Calthorpe Associates and Parson Brinckherhoff Quade and Douglas, Portland 1993.
  • [78] Fuzzy Logic Toolbox – Users Guide, version 2, 2001.
  • [79] Fwa T.F., Highway Vertical Alignment Analysis by Dynamic Programming, Transportation Research Record 1239, TRB, National Research Council, Washington, DC, 1989, 1–9.
  • [80] Gaca S., Suchorzewski W., Tracz M., Inżynieria ruchu drogowego. Teoria i praktyka, Wydawnictwa Komunikacji i Łączności, Warszawa 2009.
  • [81] Gartner N.H., Stamatiadis C., Tarno P.J., Development of advanced traffic signal control strategies for intelligent transportation systems: Multilevel design, Transportation Research Record, 1995, 1494, 98–105.
  • [82] Gasz K., Kruszyna M., Analizy procesu zgłoszeń pieszych do przejścia przez jezdnię, Drogi i Mosty, 2/2004.
  • [83] Gazis D.C., Optimal control of a system of oversaturated intersections, Operations Research, 1964, 12, 815–831.
  • [84] Gazis D.C., Potts R.B., The oversaturated intersection, Proceedings of the Second International Symposium on the Theory of Road Traffic Flow, Organization for Economic Cooperation and Development, Paris 1965, 221–237.
  • [85] Genetic Algorithm and Direct Search Toolbox – Users Guide, version 2, 2005.
  • [86] Goh C.J., Chew E.P., Fwa T.F., Discrete and continuous model for computation of optimal vertical highway alignment, Transportation Research, Part B, 1988, 22 (9), 399–409.
  • [87] Gomes G., Horowitz R., Optimal freeway ramp metering using the asymmetric cell transmission model, Transportation Research, Part C, 2006, 14, 244–262.
  • [88] Goossens J.W., van Hoesel S., Kroon L., On solving multi-type railway line planning problems, European Journal of Operational Research, 2006, 168, 403–424.
  • [89] Green D.H., Control of oversaturated intersections, Operational Research Quarterly, 1968, 18 (2), 161–173.
  • [90] Guo P., Chen C.L.P., Lyu M.R., Cluster Number Selection for a Small Set of Samples Using the Bayesian Ying–Yang Model, IEEE Transactions on Neural Networks, May 2002, Vol. 13, No. 3.
  • [91] Guzik J., Leśko M., Sterowanie ruchem drogowym – sygnalizacja świetlna i detektory ruchu pojazdów, Wydawnictwo Politechniki Śląskiej, Gliwice 2000.
  • [92] Guzik J., Leśko M., Sterowanie ruchem drogowym – sterowniki i systemy sterowania i nadzoru ruchu, Wydawnictwo Politechniki Śląskiej, Gliwice 2000.
  • [93] Handy S.L., Urban form and pedestrian choices: study of Austin neighborhoods, Transportation Research Record, 1996, 1552, 135–144.
  • [94] Hawas Y.E., Development and calibration of route choice utility models: neuro-fuzzy approach, Journal of Transportation Engineering, March/April 2004.
  • [95] Hayman R.W., Optimization of vertical alignment for highways through mathematical programming, Highway Research Record, Highway Research Board, 1970, 306, 1–9.
  • [96] Heilpern S., Podejmowanie decyzji w warunkach niepewności, Wydawnictwo Akademii Ekonomicznej, Wrocław 2001.
  • [97] Henn V., Fuzzy route choice model for traffic assignment, Fuzzy Sets and Systems, 2000, 116, 77–101.
  • [98] Heydecker B.G., Dudgeon I.W., Calculation of signal settings to minimize delay at a junction, Proceedings of 10th International Symposium on Transportation and Traffic Theory, MIT, Elsevier, New York 1987, 159–178.
  • [99] Heydecker B.G., Sequencing of traffic signals, [in:] Mathematics in Transport and Planning and Control, J.D. Griffiths (ed.), Clarendon Press, Oxford 1992, 57–67.
  • [100] Highway Capacity Manual (HCM) 2000.
  • [101] Hobfoll S.E., Conservation of resources. A new attempt at conceptualizing stress, American Psychologist, 1989, 44, 513–523.
  • [102] Hopkinson P., Wardman M., Evaluating the demand for new cycle facilities, Transport Policy, 1996, 2 (4), 241–249.
  • [103] Howard B.E., Brammick Z., Shaw J.F.B., Optimum curvature principle in highway routing, Journal of the Highway Division, ASCE 94 (HW1), 1968, 61–82.
  • [104] Hunt J.D., Simmonds D.C., Theory and application of an integrated land use and transport modeling framework, Environment and Planning, B 20, 1993, 221–234.
  • [105] Improta G., Cantarella G.E., Control system design for an individual signalized junction, Transportation Research, 18b (2), 1984, 147–167.
  • [106] Instrukcja obliczania przepustowości dróg zamiejskich, GDDP, Warszawa 1991.
  • [107] Instrukcja obliczania przepustowości dróg I i II klasy technicznej, GDDP, Warszawa 1995.
  • [108] Itakura N., Fukeda A., Honda N., Yikai K., Evaluation Method Using Chaotic Analysis for the Model of Vehicles’ Behavior in Road Traffic System, Mathematical and Computer Modelling, 2001, 33, 771–782.
  • [109] Itoh S., Diurnal variation of urban structure in terms of time distance: A spatiotemporal analysis of an urban area, Geo Journal, 2001, 52, 223–235.
  • [110] Jabłoński M., Zastosowanie sztucznych sieci neuronowych i optymalizacji wielokryterialnej w projektowaniu kompozytu ceramicznego o podwyższonej odporności na działanie niskich temperatur, Praca Doktorska (niepublikowana), Politechnika Łódzka, Wydział Budownictwa, Architektury i Inżynierii Środowiska, Katedra Fizyki Budowli i Materiałów Budowlanych, 1999.
  • [111] Jarzębińska-Dziegciar A., Optymalizacja nieliniowych sieci transportowych z wykorzystaniem algorytmów genetycznych, Praca Doktorska (niepublikowana), Politechnika Warszawska, Wydział Transportu, 2004.
  • [112] Jha M.K., A geographic information systems-based model for highway design optimization, Ph.D. dissertation, University of Maryland, College Park, 2000.
  • [113] Jha M.K., Schonfeld P., Integrating genetic algorithms and GIS to optimize highway alignments, Transportation Research Record, 2000, 1719, 233–240.
  • [114] Jha M.K., Criteria-based decision support system for selecting highway alignments, Journal of Transportation Engineering, 2003, 129 (1), 33–41.
  • [115] Jha M.K., Schonfeld P., A highway alignment optimization model using geographic information systems, Transportation Research, Part A, 2004, 38 (6), 455–481.
  • [116] Jiang Y., Li S., Shamo D.E., A platoon-based traffic signal timing algorithm for major–minor intersection types, Transportation Research, Part B, 2006, 40, 543–562.
  • [117] Jong J.Ch., Optimizing highway alignments with genetic algorithms, Ph.D. dissertation, University of Maryland, College Park, 1998.
  • [118] Jong J.Ch., Jha M.K., Schonfeld P., Preliminary Highway Design with Genetic Algorithms and Geographic Information Systems, Computer-Aided Civil and Infrastructure Engineering, 2000, 15.
  • [119] Jong J.Ch., Schonfeld P., An evolutionary model for simultaneously optimizing three-dimensional highway alignments, Transportation Research, Part B, 2003, 37 (2), 107–128.
  • [120] Josefsson M., Patriksson M., Sensitivity analysis of separable traffic equilibrium equilibria with application to bilevel optimization in network design, Transportation Research, Part B, 2007, 41, 4–31.
  • [121] Kalic M., Teodorovic D., Trip distribution modelling using fuzzy logic and a genetic algorithm, Transportation Planning and Technology, June 2003, Vol. 26, No. 3, 213–238.
  • [122] Kaltenbach M., Koivo H.N., Modelling and control of urban traffic flow, Proceedings of the Joint Automatic Control Conference, University of Texas, Houston, Texas, 1974, 147–154.
  • [123] Kang S., Byun H., Lee S.W., Real-time pedestrian detection using support vector machines, International Journal of Pattern Recognition and Artificial Intelligence, 2003, Vol. 17, No. 3, 405–416.
  • [124] Karlaftis M.G., Golias I., Effects of road geometry and traffic volumes on rural roadway accident rates, Accident Analysis and Prevention, 2002, 34, 357–365.
  • [125] Katsuhiro H., Ichihashi H., Linear Fuzzy Clustering Techniques With Missing Values and Their Application to Local Principal Component Analysis, IEEE Transactions on Fuzzy Systems, April 2004, Vol. 12, No. 2.
  • [126] Kim E., Modeling intersections and other structures in highway alignment optimization, Ph.D. dissertation, University of Maryland, College Park, 2001.
  • [127] Kim E., Determinants of Optimal Level of Transportation Infrastructure, Journal of Urban Planning And Development, September 2002.
  • [128] Kim E., Jha M.K., Lovell D.J., Schonfeld P., Intersection cost modeling for highway alignment optimization, Computer-Aided Civil and Infrastructure Engineering, 2004, 19 (2), 136–146.
  • [129] Kim E., Jha M.K., Son B., Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach, Transportation Research, Part B, 2005, 39, 339–360.
  • [130] Kim K.S., Benguigui L., Marinov M., The fractal structure of Seoul’s public transportation system, Cities, 2003, Vol. 20, No. 1, 31–39.
  • [131] Kitamura R., Mohktarian P.L., Laidet L., A micro-analysis of land use and travel in five neighborhoods in the San Francisco Bay Area, Transportation, 1997, 24, 125–158.
  • [132] Klaassen L.H., The role of traffic in physical planning of urban areas, CEMT Symposium, Rome, September 1969.
  • [133] Kockelman K.M., Cervero R., Travel demand and the 3Ds: density, diversity and design, Transportation Research, 1997, D 2, 199–219.
  • [134] Kockelman K.M., Shabih R.A., Effect of light-duty trucks on the capacity of signalized intersections, Journal of Transportation Engineering, November/December 2000, 506–512.
  • [135] Kogut J., Analiza spektrum odpowiedzi drgań drogowych, Praca Doktorska (niepublikowana), Politechnika Krakowska, Wydział Inżynierii Lądowej, Instytut Mechaniki Budowli, 2000.
  • [136] Komentarz do warunków technicznych jakim powinny odpowiadać drogi publiczne i ich usytuowanie, cz.1: Wprowadzenie, Transprojekt, Warszawa 2000.
  • [137] Komentarz do warunków technicznych jakim powinny odpowiadać drogi publiczne i ich usytuowanie, cz.2: Zagadnienia techniczne, Transprojekt, Warszawa 2002.
  • [138] Korve M.J., Niemeier D.A., Benefit-Cost Analysis of Added bicycle Phase at Existing signalized intersection, Journal of Transportation Engineering, January/February, 2002, 40–48.
  • [139] Kosonen I., Multi-agent fuzzy signal control based on real-time simulation, Transportation Research, Part C, 2003, 11, 389–403.
  • [140] Koyuncu M., Amado S., Effects of stimulus type, duration and location on priming of road signs: Implications for driving, Transportation Research, Part F, 2008, 11, 108–125.
  • [141] Krawiec S., Kształtowanie struktury ekonomicznej współczesnego systemu transportowego, Wydawnictwo Politechniki Śląskiej, Gliwice 2008.
  • [142] Kreft K., Komputerowe modele sieci neuronowych jako narzędzia prognozowania w lądowomorskim łańcuchu transportowym, Praca Doktorska (niepublikowana), Uniwersytet Gdański, Wydział Ekonomiczny, Instytut Transportu i Handlu Morskiego, 2000.
  • [143] Krizek K., Operationalizing neighborhood accessibility for land use – travel behavior research and regional modeling, Journal of Planning Education and Research, 2003, 22, 270–287.
  • [144] Krizek K.J., Roland R.W., What is at the end of the road? Understanding discontinuities of onstreet bicycle lanes in urban settings, Transportation Research, Part D, 2005, 10, 55–68.
  • [145] Król M., Optymalizacja parametrów termicznych wybranych typów okien, Praca Doktorska (niepublikowana), Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, 2004.
  • [146] Kruszyna M., Makuch J., Trzcinowicz B., Autobus na torowisku tramwajowym we Wrocławiu, Transport Miejski, 9/99.
  • [147] Kruszyna M., Dostępność połączeń jako kryterium konkurencyjności systemów transportu, Transport Miejski, 11/99.
  • [148] Kruszyna M., Prędkość pieszego na przejściu przez jezdnię, Bezpieczne Drogi, 12/99.
  • [149] Kruszyna M., Przepustowość elementów sieci komunikacji zbiorowej, Praca Doktorska, Raport Instytutu Inżynierii Lądowej z serii PRE 41/99, Wrocław 1999.
  • [150] Kruszyna M., Lutogniewski J., Usprawnienia ruchu na konwencjonalnej trasie tramwajowej za pomocą środków inżynierii ruchu, Transport Miejski, 1/00.
  • [151] Kruszyna M., Szydło A., A simulation research on vehicles flow in public transport network, Archieves of Transport, 4/00.
  • [152] Kruszyna M., Szydło A., Porównanie modeli: deterministycznego i stochastycznego w modelowaniu ruchu pojazdów komunikacji zbiorowej, XLVII konferencja naukowa „Problemy naukowo-badawcze budownictwa”, Opole–Krynica, 16–21. 09.01.
  • [153] Kruszyna M., Akomodacja na przejściu dla pieszych, cz. 1 – przejścia pojedyncze, Transport Miejski, 9/2002.
  • [154] Kruszyna M., Akomodacja na przejściu dla pieszych, cz. 2 – przejścia podwójne, Transport Miejski, 10/2002.
  • [155] Kruszyna M., The green light time split at pedestrian crossing with consideration of different road users, Archieves of Transport, 3/2003.
  • [156] Kruszyna M., Metoda zwiększania przepustowości tras ruchu tramwajowego, w monografii Rejestracja i przetwarzanie danych w telematycznych systemach transportu, wydawnictwo Politechniki Śląskiej, Gliwice 2003.
  • [157] Kruszyna M., Ocena systemu tras rowerowych i głównych ciągów pieszych w centrum Wrocławia ze szczególnym uwypukleniem barier ciągłości przebiegu, w „Wrocław 2000 Plus, Studia nad strategią miasta”, zeszyt 7 (51), Wrocław 2003.
  • [158] Kruszyna M., Szydło A., Optymalizacja podziału sygnału zielonego na przejściu dla pieszych w oparciu o średnie straty czasu, Drogi i mosty, 3/2004.
  • [159] Kruszyna M., Parametry opisujące ruch pieszych na przejściu przez jezdnię wyposażonym w sygnalizacje świetlne, L. konferencja naukowa „Problemy naukowo-badawcze budownictwa”, Warszawa–Krynica, 12–17.09.04.
  • [160] Kruszyna M., Priorytety dla komunikacji autobusowej – przegląd metod i rozwiązań wykorzystujących dynamiczne sterowanie ruchem, VII. Konferencja Komunikacji Miejskiej, Lubin, maj–czerwiec 2005.
  • [161] Kruszyna M., Metody heurystyczne w zagadnieniach inżynierii ruchu drogowego, Drogownictwo, 10/2005.
  • [162] Kruszyna M., Mackiewicz P., Szydło A., Influence of entry process on pedestrians’ delays at a signal controlled crossing, Journal of Transportation Engineering, 2006, 132.
  • [163] Kruszyna M., Wykorzystanie algorytmów genetycznych w wybranych zagadnieniach inżynierii ruchu drogowego, LII. konferencja naukowa „Problemy naukowo-badawcze budownictwa”, Gdańsk–Krynica, 11–16.09.06; Zeszyty Naukowe Politechniki Gdańskiej 603, Budownictwo Lądowe Nr 60.
  • [164] Kruszyna M., Optymalizacja sterowania ruchem drogowym nakierowana na wymagania użytkowników z różnych grup, Poznań 2007.
  • [165] Kuo K.Y., Lin J., Application of fuzzy set theory to the change intervals at a signalized intersection, Fuzzy Sets and Systems, 2002, 129, 387–403.
  • [166] Lam W.H.K., Poon A.C.K., Mung G.K.S., Integrated model for lane-use and signal-phase designs, ASCE Journal of Transportation Engineering, 1997, 123, 114–122.
  • [167] Laval J.A., A macroscopic theory of two-lane rural roads, Transportation Research, Part B, 2006, 40, 937–944.
  • [168] Le-Anh T., De Koster M.B.M., A review of design and control of automated guided vehicle systems, European Journal of Operational Research, 2006, 171, 1–23.
  • [169] Leeuwaarden van J.S.H., Delay Analysis for the Fixed-Cycle Traffic-Light Queue, Transportation Science, May 2006, Vol. 40, No. 2, 189–199.
  • 170] Leśniak A., Metoda kalkulacji kosztów pośrednich robót budowlanych z zastosowaniem sztucznych sieci neuronowych, Praca Doktorska (niepublikowana), Politechnika Krakowska, Wydział Inżynierii Lądowej, 2004.
  • [171] Li J., Kwan R.S.K., A fuzzy genetic algorithm for driver scheduling, European Journal of Operational Research, 2003, 147, 334–344.
  • [172] Li L., Lai K.K., A fuzzy approach to the multi objective transportation problem, Computers & Operations Research, 2000, 27, 43–57.
  • [173] Li Q., Wang Z., Yang J., Wang J., Pedestrian delay estimation at signalized intersections in developing cities, Transportation Research, Part A, 2005, 39, 61–73.
  • [174] Liatsis P., Tawfik H.M., Two-dimensional road shape optimisation using genetic algorithms, Mathematics and Computers in Simulation, 1999, 51, 19–31.
  • [175] Lindblom C.E., The intelligence of democracy, The Free Press, New York 1965.
  • [176] Liu R.X., Li H., Wang Z.F., The discontinuous finite element method for red-and-green light models for the traffic flow, Mathematics and Computers in Simulation, 2001, 56, 55–67.
  • [177] Lo H.K., A Cell-Based Traffic Control Formulation: Strategies and Benefits of Dynamic Timing Plans, Transportation Science, May 2001, Vol. 35, No. 2, 148–164.
  • [178] Lo H.K., A Reliability Framework for Traffic Signal Control, IEEE Transactions on Intelligent Transportation Systems, June 2006, Vol. 7, No. 2.
  • [179] Lyons G., Hunt J., McLeod F., A neural network model for enhanced operation of midblock signalled pedestrian crossings, European Journal of Operational Research, 2001, 129, 346–354.
  • [180] Łęski J., Towards a robust fuzzy clustering, Fuzzy Sets and Systems, 2003, 137, 215–233.
  • [181] Malinowski P., Zastosowanie teorii zbiorów rozmytych i sieci neuronowych w inżynierii środowiska, Praca Doktorska (niepublikowana), Politechnika Wrocławska, Instytut Inżynierii Ochrony Środowiska, 1996.
  • [182] Mannheim M.L., Hall F.L., Abstract representation of goals, professional Paper P67-24, MIT Department if Civil Engineering, Cambridge 1968.
  • [183] Marczak M.A., Modelowanie ruchu na pasach kierunkowych wlotu na skrzyżowanie, Praca dyplomowa, Instytut Inżynierii Lądowej Politechniki Wrocławskiej, 2005.
  • [184] Mather R.D., DeLucia P.R., Testing for effects of racial attitudes and visual contrast on the speed of a driver’s response to a pedestrian, Transportation Research, Part F, 2007, 10, 437–446.
  • [185] May A.D.Jr., Traffic flow theory and the traffic engineer’s challenge, Proceedings of the Institute Traffic Engineering, 1965, 290–303.
  • [186] McNally M.G., Kulkarni A., Assessment of influence of land use-transportation system on travel behavior, Transportation Research Record, 1997, 1607, 105–115.
  • [187] Medaglia A.L., Fang S.Ch., Nuttle H.L.W., Wilson J.R., An efficient and flexible mechanism for constructing membership functions, European Journal of Operational Research, 2002, 139, 84–95.
  • [188] Medasani S., Kim J., Krishnapuram R., An Overview of membership function generation techniques for pattern recognition, International Journal of Approximate Reasoning, 1998, 19, 391–417.
  • [189] Melo J., Naftel A., Bernardino A., Santos-Victor J., Detection and Classification of Highway Lanes Using Vehicle Motion Trajectories, IEEE Transactions On Intelligent Transportation Systems, June 2006, Vol. 7, No. 2, 188–200.
  • [190] Metoda obliczania przepustowości rond. Instrukcja obliczania, GDDKiA, Warszawa 2004
  • [191] Metoda obliczania przepustowości skrzyżowań bez sygnalizacji świetlnej. Instrukcja obliczania, GDDKiA, Warszawa 2004
  • [192] Metoda obliczania przepustowości skrzyżowań z sygnalizacją świetlną. Instrukcja obliczania, GDDKiA, Warszawa 2004
  • [193] Michalopoulos P.G., Stephanopolos G., Oversaturated signal system with queue length constraints, Transportation Research, 1977, 11, 413–421.
  • [194] Michalopoulos P.G., Stephanopolos G., Optimal control of oversaturated intersections theoretical and practical considerations, Traffic Engineering & Control, 1978, 216–221.
  • [195] Middendorf M., Reischle F., Schmeck H., Multi Colony Ant Algorithms, Journal of Heuristics, 2002, 8, 305–320.
  • [196] Millonig A., Schechtner K., Developing Landmark-Based Pedestrian-Navigation Systems, IEEE Transactions on Intelligent Transportation Systems, March 2007, Vol. 8, No. 1.
  • [197] Mirchandani P., Head L., A Real-time traffic signal control system: architecture, algorithms and analysis, Transportation Research, Part C, 2001, 9, 415–432.
  • [198] Mirchandani P.B., Zou N., Queuing Models for Analysis of Traffic Adaptive Signal Control, IEEE Transactions on Intelligent Transportation Systems, March 2007, Vol. 8, No. 1.
  • [199] Mitchell D.H., Mac Gregor Smith J., Topological network design of pedestrian networks, Transportation Research, Part B, 2001, 35, 107–135.
  • [200] Mohring H., Harwitz M., Highway benefits, Northwestern University Press, Evanston, I11, 1962.
  • [201] Moon C., Kim J., Choi G., Seo Y., An efficient genetic algorithm for the traveling salesman problem with precedence constraints, European Journal of Operational Research, 2002, 140, 606–617.
  • [202] Muramatsu M., Nagatani T., Jamming transition in two-dimensional pedestrian traffic, Physica A, 275, 2000, 281–291.
  • [203] Murat Y.S., Gedizlioglu E., A fuzzy logic multi-phased signal control model for isolated junctions, Transportation Research, Part C, 2005, 13, 19–36.
  • [204] Murchland J.D., Methods of vertical profile optimization for an improvement to an existing road, PTRC Seminar Proceedings on Cost Models and Optimization in Highways (Session L12), London 1973.
  • [205] Nakanishi T., Yikai K., Satoh J., Miyoshi I., Satoh A., Takahashi M., The development of a road traffic simulation system in broad areas, Mathematics and Computer in Simulation, 1995, 39, 207–212.
  • [206] Nelson A.C., Allen D., If you build them, commuters will use them, Transportation Research Record: Journal of the Transportation Research Board, No, 1578, TRB, National Research Council, Washington, DC, 1997, 79–83.
  • [207] Neuburger H., The evaluation of user benefits on transport projects, Economic Planning Directorate, Technical Note 2, Ministry of Transport, London 1969.
  • [208] Neuburger H., User benefit in the evaluation of transport and land use plans, Journal of Transport Economics and Policy, January 1971, 5.
  • [209] Nevers B.L., Rouphail N.M., Field Evaluation of Lane Selection Strategies at Signalized Intersections, Journal of Transportation Engineering, May/June 2002.
  • [210] Newell G.F., Applications of Queuing Theory, 2nd ed. Chapman & Hall, London, England, 1982, 287–300.
  • [211] Nicholson A.J., Elms D.G., Williman A., A variational approach to optimal route location, The Journal of the Institution of Highway Engineers, 1976, 23, 22–25.
  • [212] Niczyj J., Wielokryterialna optymalizacja niezawodnościowa oraz szacowanie stanu technicznego konstrukcji prętowych z zastosowaniem teorii zbiorów rozmytych, Wydawnictwo uczelniane Politechniki Szczecińskiej, Szczecin 2003.
  • [213] Niittymaaki J., Isolated traffic signals—vehicle dynamics and fuzzy control, Thesis, Helsinki University of Technology, 1997.
  • [214] Niittymaaki J., Kikuchi S., Application of fuzzy logic of a pedestrian crossing signal, Transportation Research Record, No 1651, Intelligent Transportation Systems, Automated Highway Systems, Travel Information, and Artificial Intelligence, Washington, DC, 1998.
  • [215] Niittymaki J., Pursula M., Signal control using fuzzy logic, Fuzzy Sets and Systems, 2000, 116, 11–22.
  • [216] Niittymaki J., Turunen E., Traffic signal control on similarity logic reasoning, Fuzzy Sets and Systems, 2003, 133, 109–131.
  • [217] Obuchowicz A.P., Evolutionary Algorithms for Global Optimization and Dynamic System Diagnosis, Lubuskie Towarzystwo Naukowe w Zielonej Górze 2003.
  • [218] Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej w sprawie ogłoszenia jednolitego tekstu ustawy – Prawo o ruchu drogowym, DzU Nr 108, poz.908 z 2 czerwca 2005.
  • [219] OECD, Optimisation of Road Alignment by the Use of Computers, Organization of Economic Co-operation and Development, Paris 1973.
  • [220 ]Oh H., Sisiopiku V.P., Probabilistic Models for Pedestrian Capacity and Delay at Roundabouts, Transportation Research Circular E-C018: 4th International Symposium on Highway Capacity.
  • [221] Paczkowski W.M., Wybrane problemy dyskretnej optymalizacji ewolucyjnej, Wydawnictwo uczelniane Politechniki Szczecińskiej, Szczecin 1999.
  • [222] Pappis C., Mamdani E., A fuzzy logic controller to a traffic junction, IEEE Trans. Systems, Man. Cybernet., 1977, 7 (10), 707–717.
  • [223] Parker, N.A., Rural highway route corridor selection, Transportation Planning and Technology, 1977, 3, 247–256.
  • [224] Parks J.R., Schofer J.L., Characterizing neighborhood pedestrian environments with secondary data, Transportation Research, Part D, 2006, 11, 250–263.
  • [225] Piątkowski G., Wykrywanie uszkodzeń w elementach konstrukcyjnych z wykorzystaniem sztucznych sieci neuronowych, Praca Doktorska (niepublikowana), Politechnika Rzeszowska, Wydział Budownictwa i Inżynierii Środowiska, Katedra Mechaniki Konstrukcji, 2003.
  • [226] Piegat A., Modelowanie i sterowanie rozmyte, Akademicka Oficyna Wydawnicza EXIT, Warszawa 1999.
  • [227] Pikora T., Bull F., Jamrozik K., Knuiman M., Giles-Corti B., Donovan R., Developing a reliable audit instrument to measure the physical environment for physical activity, American Journal of Preventive Medicine, 2002, 23, 187–194.
  • [228] Pless R., Detecting Roads in Stabilized Video with the Spatio-Temporal Structure Tensor, GeoInformatica, 2006, 10, 1, 37–53.
  • [229] Porter B.E., England K.J., Predicting Red-Light Running Behavior: A Traffic Safety Study in Three Urban Settings, Journal of Safety Research, 2000, Vol. 31, No. 1, 1–8.
  • [230] Postaw na rower – podręcznik projektowania przyjaznej dla rowerów infrastruktury, CROW oraz ZG PKE, Kraków 1999.
  • [231] Pownuk A., Zastosowanie teorii zbiorów rozmytych do oceny bezpieczeństwa konstrukcji budowlanych, Praca Doktorska (niepublikowana), Politechnika Śląska, Wydział Budownictwa, Katedra Teorii Konstrukcji Budowlanych, 2001.
  • [232] Pradhan A., Kockelman K., Uncertainty propagation in an integrated land use-transportation modeling framework: output variation via UrbanSim, Transportation Research Record, 2002, 1805, 128–135.
  • [233]Pretty R., The Delay to Pedestrians and Vehicles at Signalized Intersections, ITE Journal, 1979, Vol. 49, Issue 5, 20–23.
  • [234] Puy Huarte J., OPYGAR: Optimization and automatic design of highway profiles, PTRC Seminar Proceedings on Cost Models and Optimization in Highways, Session L13, London 1973.
  • [235] Qiao F., Yi P., Yang H., Devarakonda S., Fuzzy Logic Based Intersection Delay Estimation, Mathematical and Computer Modelling, 2002, 36, 1425–1434.
  • [236] Quarmby D.A., An interim procedure for the economic evaluation of transportation networks, Mathematical Advisory Unit note 136, Ministry of Transport, London 1969.
  • [237] Quintero A., Konare D., Pierre S., Prototyping an intelligent decision support system for improving urban infrastructures management, European Journal of Operational Research, 2005, 162, 654–672.
  • [238] Rakha H., El-Shawarby I., Setti J.R., Characterizing Driver Behavior on Signalized Intersection Approaches at the Onset of a Yellow-Phase Trigger, IEEE Transactions on Intelligent Transportation Systems, December 2007, Vol. 8, No. 4.
  • [239] Randall T.A., Baetz B.W., Evaluating Pedestrian Connectivity For Suburban Sustainability, Journal of Urban Planning And Development, March 2001.
  • [240] Rattarangsi A., Chin R.T., Scale-based detection of corners of planar curves, IEEE Trans. Patt. Anal. Machine. Intell., PAMI-14(4), 1992, 430–449.
  • [241] Replogle, M., MNCPPC 1988 Logit mode choice model for home to work trips, Maryland National Parks and Planning Commission, 1988.
  • [242] Retting R.A., Chapline J.F., Williams A.F., Changes in crash risk following re-timing of traffic signal change intervals, Accident Analysis and Prevention, 2002, 34, 215–220.
  • [243] ReVelle C.S., Whitlatch E.E., Wright J.R., Civil and Environmental Systems Engineering, Prentice Hall, New Jersey 1997.
  • [244] Robinson R., Automatic design of the road vertical alignment, PTRC Seminar Proceedings on Cost Models and Optimization in Highways, Session L9, London 1973.
  • [245] Roozemond D.A., Using intelligent agents for pro-active, real-time urban intersection control, European Journal of Operational Research, 2001, 131, 293–301.
  • [246] Rozporządzenie Ministra Transportu i Gospodarki Morskiej w sprawie warunków technicznych, jakim powinny odpowiadać drogi publiczne i ich usytuowanie (z dnia 14.05.1999, DzU Nr 43, poz. 430).
  • [247] Rozporządzenie Ministra Infrastruktury w sprawie szczegółowych warunków technicznych dla znaków i sygnałów drogowych oraz urządzeń bezpieczeństwa ruchu drogowego i warunków ich umieszczania na drogach (z dnia 3.07.2003r., Dz.U.Nr 220, poz.2181), zał. 1: Szczegółowe warunki techniczne dla znaków drogowych pionowych, zał. 2: Szczegółowe warunki techniczne dla znaków drogowych poziomych, zał. 3: Szczegółowe warunki techniczne dla sygnałów drogowych, zał. 4: Szczegółowe warunki techniczne dla urządzeń bezpieczeństwa ruchu drogowego.
  • [248] Rudnicki A., Jakość komunikacji miejskiej, Kraków 1999.
  • [249] Rutkowska D., Piliński M., Rutkowski L., Sieci neuronowe, algorytmy genetyczne i systemy rozmyte, Wydawnictwo Naukowe PWN, Warszawa 1999.
  • [250] Saito M., Fan J., Artificial Neural Network–Based Heuristic Optimal Traffic Signal Timing, Computer-Aided Civil and Infrastructure Engineering, 2000, 15, 281–291.
  • [251] Sambor A., Priorytety w ruchu dla pojazdów komunikacji miejskiej, IGKM 1999.
  • [252] Sánchez J., Galán M., Rubio E., Applying a Traffic Lights Evolutionary Optimization Technique to a Real Case: “Las Ramblas” Area In Santa Cruz de Tenerife, IEEE Transactions on Evolutionary Computation, February 2008, Vol. 12, No. 1.
  • [253] Sang A.P., Silcock J.P., SIGSIGN user manual, Steer Davies and Gleave Ltd. and Transport Studies Group, University College, London 1989.
  • [254] Sasaki M., Nagatani T., Transition and saturation of traffic flow controlled by traffic lights, Physica, A, 2003, 325, 531–546.
  • [255] Sato T., Akamatsu M., Influence of traffic conditions on driver behavior before making a right turn at an intersection: Analysis of driver behavior based on measured data on an actual road, Transportation Research, Part F, 2007, 10, 397–413.
  • [256] Sawicki P., Metoda oceny jakości systemu transportowego z zastosowaniem teorii zbiorów przybliżonych, Praca Doktorska (niepublikowana), Politechnika Warszawska, 2003.
  • [257] Schabowicz K., Nieniszcząca identyfikacja wytrzymałości na ściskanie betonu z wykorzystaniem sztucznych sieci neuronowych, Praca Doktorska (niepublikowana), Politechnika Wrocławska, 2003.
  • [258] Schneider R.J., Ryznar R.M., Khattak A.J., An accident waiting to happen: a spatial approach to proactive pedestrian planning, Accident Analysis and Prevention, 2004, 36, 193–211.
  • [259] Shafizadeh K., Niemeier D., Bicycle journey-to-work: travel behavior characteristics and spatial attributes, Transportation Research Record: Journal of the Transportation Research Board, No. 1578, TRB, National Research Council, Washington, DC, 1997, 84–90.
  • [260] Sharma S., Lingras P., Xu F., Kilburn P., Application of neural networks to estimate AADT on lowvolume roads, Journal of Transportation Engineering, September/October 2001.
  • [261] Shaw J.F.B., Howard B.E., Comparison of two integration methods in transportation routing, Transportation Research Record, 1981, 806, 8–13.
  • [262] Shaw J.F.B., Howard B.E., Expressway route optimization by OCP, ASCE Journal of Transportation Engineering, 1982, 108 (TE3), 227–243.
  • [263] Sheu J.B., A Stochastic Optimal Control Approach to Real-time, Incident-Responsive Traffic Signal Control at Isolated Intersections, Transportation Science, November 2002, Vol. 36, No. 4, 418–434.
  • [264] Silcock J.P., Designing signal-controlled junctions for group-based operation, Transportation Research, 31A, 1997, 157–173.
  • [265] Skrzypczak I., Statystyczna i rozmyta kontrola wytrzymałości betonu, Praca Doktorska (niepublikowana), Politechnika Rzeszowska, Wydział Budownictwa i Inżynierii Środowiska, 2005.
  • [266] Smeed R.J., Road pricing: the economic and technical possibilities, Her Majesty`s Stationery office, London 1964.
  • [267] Smith J.F., The design of a transportation study with regard to the evaluation of its output, Regional Studies, August 1970, 4.
  • [268] SOAP 84, User's Manual, Federal Highway Administration, 1985.
  • [269] Spyropoulou I., Modelling a signal controlled traffic stream Rusing cellular automata, Transportation Research, Part C, 2007, 15, 175–190.
  • [270] Srinivasan D., Choy M.C., Cheu R.L., Neural Networks for Real-Time Traffic Signal Control, IEEE Transactions on Intelligent Transportation Systems, September 2006, Vol. 7, No. 3.
  • [271] Steenbrink P.A., Optymalizacja sieci transportowych, Wydawnictwa Komunikacji i Łączności, Warszawa 1978.
  • [272] Szeliga E., Niezawodność konstrukcji w warunkach niepewności w ujęciu teorii zbiorów rozmytych, Praca Doktorska (niepublikowana), Politechnika Warszawska, Wydział Inżynierii Lądowej, Ośrodek Metod Komputerowych, 2001.
  • [273] Tarno P.J., Parsonson P.S., Selecting traffic signal control at individual intersections, NCHRP Report 233, TRB, 1981.
  • [274] Taylor D., Mahmassani H., Analysis of stated preference for intermodal bicycle-transit interfaces, Transportation Research Record: Journal of the Transportation Research Board, No. 1556, TRB, National Research Council, Washington, DC, 1996, 86–95.
  • [275] Thomson N.R., Sykes J.F., Route selection through a dynamic ice field using the maximum principle, Transportation Research, Part B, 1988, 22 (5), 339–356.
  • [276] Tian Z.Z., Wu N., Probabilistic Model for Signalized Intersection Capacity with a Short Right Turn Lane, Journal of Transportation Engineering, March 2006.
  • [277] Tilahun N.Y., Levinson D.M., Krizek K.J., Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey, Transportation Research, Part A, 2007, 41, 287–301.
  • Different approaches to fuzzy clustering of incomplete datasets, International Journal of Approximate Reasoning, 2004, 35, 239–249.
  • [279] Tinbergen J., The appraisal of road construction: two calculation schemes, The Review of Economics and Statistic, August 1957.
  • [280] Tiwari G., Bangdiwala S., Saraswat A., Gaurav S., Survival analysis: Pedestrian risk exposure at signalized intersections, Transportation Research, Part F, 2007, 10, 77–89.
  • [281] Tracz M., Allsop R.E. Skrzyżowania z sygnalizacją świetlną, WkiŁ, Warszawa 1990.
  • [282] TRANSYT-7F, User’s Manual, Release 5.0, Federal Highway Administration, 1987.
  • [283] Trietsch D., A family of methods for preliminary highway alignment, Transportation Science, 1987, 21 (1), 17–25.
  • [284] Trietsch D., Comprehensive design of highway networks, Transportation Science, 1987, 21 (1), 26–35.
  • [285] Tully I.M.S.N.Z., Synthesis of sequences for traffic signal controllers using techniques of the theory of graphs, Ph.D. thesis, OUEL Report, 1189/77, University of Oxford, 1976.
  • [286] Turner A.K., Miles R.D., A computer assisted method of regional route location, Highway Research Record, 1971, 348, 1–15.
  • [287] Urbański P.R., Ocena stopnia zużycia technicznego wybranej grupy budynków mieszkalnych za pomocą sztucznych sieci neuronowych, Praca Doktorska (niepublikowana), Uniwersytet Zielonogórski, 2002.
  • [288] Vigos G., Papageorgiou M., Wang Y., Real-time estimation of vehicle-count within signalized links, Transportation Research, Part C, 2008, 16, 18–35.
  • [289] Vis I.F.A., Survey of research in the design and control of automated guided vehicle systems, European Journal of Operational Research, 2006, 170, 677–709.
  • [290] Vlahogianni E.I., Webber Jr. Ch.L., Geroliminis N., Skabardonis A., Statistical characteristics of transitional queue conditions in signalized arterials, Transportation Research, Part C, 2007, 15, 392–403.
  • [291] Wainaina S., Modal split modelling in urban travels with consideration of activity chains, Praca doktorska (niepublikowana), Politechnika Krakowska, Kraków 2003.
  • [292] Wan F.Y.M., Introduction to the Calculus of Variations and its Applications, Chapman & Hall, New York 1995.
  • [293] Webster F.V., Traffic signal settings, Road Research Technical Paper, No. 39, HMSO, London 1958.
  • [294] Wong C.K., Wong S.C., Lane-based optimization of signal timings for isolated junctions, Transportation Research, Part B, 2003, 37, 63–84.
  • [295] Wong S.C., Derivatives of performance index for the traffic model from TRANSYT, Transportation Research, 29B, 1995, 303–327.
  • [296] Wong S.C., Group-based optimization of signal timings using the TRANSYT traffic model, Transportation Research, 30B, 1996, 217–244.
  • [297] Wong S.C., Group-based optimization of signal timings using parallel computing, Transportation Research, 5C, 1997, 123–139.
  • [298] Wong S.C., Yang C., An iterative group-based signal optimization scheme for traffic equilibrium networks, Journal of Advanced Transportation, 1999, 33, 201–217.
  • [299] Wong S.C., Wong W.T., Leung C.M., Tong C.O., Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control. Transportation Research, Part B, 2000.
  • [300] Wong S.C., Yang C., Lo H.K., A path-based traffic assignment algorithm using the TRANSYT traffic model, Transportation Research, 35B, 2001, 163–181.
  • [301] Wong S.C., Yang C., Tong C.O., Wong C.K., Group-based optimization of signal timings for traffic equilibrium network, Journal of the Eastern Asia Society for Transportation Studies, 2001, 4 (4), 133–148.
  • [302] Wytyczne projektowania ulic (WPU), GDDP, Warszawa 1992.
  • [303] Wytyczne projektowania skrzyżowań drogowych, cz.1, GDDP, Warszawa 2001.
  • [304] Wytyczne projektowania skrzyżowań drogowych, cz.2, GDDP, Warszawa 2001.
  • [305] Xu F., Liu X., Fujimura K., Pedestrian Detection and Tracking With Night Vision, IEEE Transactions on Intelligent Transportation Systems, March 2005, Vol. 6, No. 1.
  • [306] Yagaanbuyant D., Ocena stanu technicznego konstrukcji betonowych z zastosowaniem zbiorów rozmytych, Praca Doktorska (niepublikowana), Politechnika Warszawska, Wydział Inżynierii Lądowej, Instytut Konstrukcji Budowlanych, 1999.
  • [307] Yagil D., Beliefs, motives and situational factors related to pedestrians’ self-reported behavior at signal-controlled crossings, Transportation Research, Part F, 2000, 3, 1–13.
  • [308] Yamazaki G., Insensitive light traffic in a cellular system with mobile subscribers, European Journal of Operational Research, 2003, 147, 418–429.
  • [309] Yan X., Radwan E., Birriel E., Geometric Models to Calculate Left-Turn Sight Distance for Signalized Intersections on Horizontal Curves, Journal of Transportation Engineering, September 2006.
  • [310] Yan X., Radwan E., Effect of restricted sight distances on driver behaviors during unprotected left-turn phase at signalized intersections, Transportation Research, Part F, 2007, 10, 330–344.
  • [311] Yao J., Dash M., Tan S.T., Liu H., Entropy-based fuzzy clustering and fuzzy modeling, Fuzzy Sets and Systems, 2000, 113, 381–388.
  • [312] Yin H., Wong S.C., Xu J., Wong C.K., Urban traffic flow prediction using a fuzzy-neural approach, Transportation Research, Part C, 2002, 10, 85–98.
  • [313] Yu X.H., Recker W.W., Stochastic adaptive control model for traffic signal systems, Transportation Research, Part C, 2006, 14, 263–282.
  • [314] Zhang J.S., Leung Y.W., Improved Possibilistic C-Means Clustering Algorithms, IEEE Transactions on Fuzzy Systems, April 2004, Vol. 12, No. 2.
  • [315] Zhao L., Thorpe C.E., Stereo- and Neural Network-Based Pedestrian Detection, IEEE Transactions on Intelligent Transportation Systems, September 2000, Vol. 1, No. 3.
  • [316] Żukowska J., Modelowanie ryzyka w ruchu drogowym szeregami czasowymi, Praca Doktorska (niepublikowana), Politechnika Gdańska, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55d59a93-a715-4a0a-9adc-9db41995fb32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.