PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated anaerobic digestion and gasification processes for upgrade of ethanol biorefinery residues

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The upgrading of the biorefineries residues is a possible way to increase the overall process efficiency while attaining economical revenues from wastes that otherwise would be discarded. In this sense, anaerobic digestion and gasification represent interesting alternatives to convert organic residues into biofuels, electricity or other bioproducts. However, few studies have explored energy integration possibilities between those options or evaluated various final product pathways. Thus, in this work, various scenarios aimed at capitalizing the main residues of the sugarcane ethanol industry (vinasse and bagasse) are investigated. Two process layouts combining anaerobic digestion and gasification are proposed for each desired product (methane, hydrogen or power). The highest exergy efficiency (48%) was obtained for the configuration focused on methane production and using a combined cycle, since it requires fewer resources and separation steps to convert feedstock into exportable products. On the other hand, exergy was primarily destroyed in vinasse disposal, since a significant fraction of its organic wastes are inert to anaerobic digestion, followed by the bagasse gasifier and utility systems, due to the irreversible reactions occurring in these processes. In short, this study points to some improvement opportunities and reinforces the advantages of the waste capitalization concept.
Rocznik
Strony
104--114
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Mello Moraes, 2231, Cidade Universitária, São Paulo/SP,Brazil
  • Department of Mechanical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Mello Moraes, 2231, Cidade Universitária, São Paulo/SP,Brazil
  • Department of Mechanical Engineering, Polytechnic School, University of São Paulo, Av. Prof. Mello Moraes, 2231, Cidade Universitária, São Paulo/SP,Brazil
Bibliografia
  • [1] International Energy Agency (IEA), Renewables information: Overview 2017, IEA Statistics, 2017.
  • [2] Brazilian Energy Research Company (EPE), Brazilian Energy Balance year 2016, EPE, Rio de Janeiro, RJ, Brazil, 2017.
  • [3] National Water Agency of Brazil (ANA), Handbook of water conservation and reuse in the sugarcane industry (In portuguese), ANA; FIESP; UNICA; CTC, 2009.
  • [4] R. N. Nakashima, S. de Oliveira Junior, Exergy assessment of vinasse disposal alternatives : concentration , anaerobic digestion and fertirrigation, in: 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact on Energy Systems ECOS, 2018, p. 15.
  • [5] L. F. Pellegrini, S. de Oliveira, Exergy analysis of sugarcane bagasse gasification, Energy 32 (4) (2007) 314–327. doi:10.1016/j.energy.2006.07.028.
  • [6] W. M. Budzianowski, Low-carbon power generation cycles: the feasibility of co2 capture and opportunities for integration, Journal of Power Technologies 91 (1) (2011) 6–13.
  • [7] R. Palacios-Bereche, K. J. Mosqueira-Salazar, M. Modesto, A. V. Ensinas, S. A. Nebra, L. M. Serra, M. A. Lozano, Exergetic analysis of the integrated first- and second-generation ethanol production from sugarcane, Energy 62 (2013) 46–61. doi:10.1016/j.energy.2013.05.010.
  • [8] G. Allesina, S. Pedrazzi, L. Guidetti, P. Tartarini, Modeling of coupling gasification and anaerobic digestion processes for maize bioenergy conversion, Biomass and Bioenergy 81 (2015) 444–451. doi:10.1016/j.biombioe.2015.07.010.
  • [9] M. Gassner, F. Maréchal, Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass, Biomass and Bioenergy 33 (11) (2009) 1587–1604. doi:10.1016/j.biombioe.2009.08.004.
  • [10] L. Tock, F. Maréchal, Co-production of hydrogen and electricity from lignocellulosic biomass: Process design and thermo-economic optimization, Energy 45 (1) (2012) 339–349. doi:10.1016/j.energy.2012.01.056.
  • [11] E. L. Barrera, E. Rosa, H. Spanjers, O. Romero, S. De Meester, J. Dewulf, A comparative assessment of anaerobic digestion power plants as alternative to lagoons for vinasse treatment: Life cycle assessment and exergy analysis, Journal of Cleaner Production 113 (2016) 459–471. doi:10.1016/j.jclepro.2015.11.095.
  • [12] R. M. Leme, J. E. Seabra, Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry, Energy 119 (2017) 754–766. doi:10.1016/j.energy.2016.11.029.
  • [13] D. Flórez-Orrego, J. A. M. da Silva, H. Velásquez, S. de Oliveira, Renewable and non-renewable exergy costs and CO2 emissions in the production of fuels for Brazilian transportation sector, Energy 88 (2015) 18–36. doi:10.1016/j.energy.2015.05.031.
  • [14] E. L. Barrera, H. Spanjers, O. Romero, E. Rosa, J. Dewulf, Characterization of the sulfate reduction process in the anaerobic digestion of a very high strength and sulfate rich vinasse, Chemical Engineering Journal 248 (2014) 383–393. doi:10.1016/j.cej.2014.03.057.
  • [15] A. C. Wilkie, K. J. Riedesel, J. M. Owens, Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks, Biomass and Bioenergy 19 (2) (2000) 63–102. doi:10.1016/S0961-9534(00)00017-9.
  • [16] A. Carrara, A. Perdichizzi, G. Barigozzi, Simulation of an hydrogen production steam reforming industrial plant for energetic performance prediction, International Journal of Hydrogen Energy 35 (8) (2010) 3499– 3508. doi:10.1016/j.ijhydene.2009.12.156.
  • [17] D. Flórez-Orrego, S. de Oliveira Junior, On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant, Energy 117 (2016) 341–360. doi:10.1016/j.energy.2016.05.096.
  • [18] P. Basu, Biomass Gasification and Pyrolysis, Elsevier, 2010. doi:10.1016/c2009-0-20099-7.
  • [19] J. Andersson, J. Lundgren, Techno-economic analysis of ammonia production via integrated biomass gasification, Applied Energy 130 (2014) 484–490. doi:10.1016/j.apenergy.2014.02.029.
  • [20] Y. C. Ardila, J. E. J. Figueroa, B. H. Lunelli, R. M. Filho, M. R. Wolf Maciel, Syngas production from sugar cane bagasse in a circulating fluidized bed gasifier using Aspen Plus.: Modelling and Simulation, Computer Aided Chemical Engineering 30 (2012) 1093–1097. doi:10.1016/b978-0-444-59520-1.50077-4.
  • [21] C. M. Kinchin, R. L. Bain, Hydrogen Production from Biomass via Indirect Gasification : The Impact of NREL Process Development Unit Gasifier Correlations (2009).
  • [22] Haldor Topsøe, From solid fuels to substitute natural gas (SNG) using TREMP Topsøe Recycle Energy-efficient Methanation Process, www.topsoe.com (2009).
  • [23] S. Li, X. Ji, X. Zhang, L. Gao, H. Jin, Coal to SNG: Technical progress, modeling and system optimization through exergy analysis, Applied Energy 136 (2014) 98–109. doi:10.1016/J.APENERGY.2014.09.006.
  • [24] H. H. Nguyen, Modelling of food waste digestion using ADM1 integrated with Aspen Plus, Ph.D. thesis, University of Southampton, Faculty of Engineering and the Environment (2014).
  • [25] I. D. C. Macedo, M. R. L. V. Leal, J. E. A. R. Silva, Greenhouse gases emissions of the ethanol use in Brazil (In portuguese), Deparment of Environment, São Paulo State Government, 2004.
  • [26] A. Elia Neto, Vinasse state of the art (In portuguese), UNICA, Piracicaba, SP, Brazil, 2016.
  • [27] D. J. Batstone, J. Keller, I. Angelidaki, S. V. Kalyuzhnyi, S. G. Pavlostathis, A. Rozzi, W. T. M. Sanders, H. Siegrist, V. A. Vavilin, Anaerobic digestion model no. 1 (ADM1), IWA task group for mathematical modelling of anaerobic digestion processes, IWA Publishing, London, UK, 2002.
  • [28] E. L. Barrera, H. Spanjers, K. Solon, Y. Amerlinck, I. Nopens, J. Dewulf, Modeling the anaerobic digestion of cane-molasses vinasse: Extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater, Water Research 71 (2015) 42–54. doi:10.1016/j.watres.2014.12.026.
  • [29] M. &. Eddy, F. L. Burton, H. D. Stensel, G. Tchobanoglous, Wastewater engineering: treatment and reuse, McGraw Hill, 2003.
  • [30] Aspen Plus, Rate-based model of the CO2 capture process by NaOH using Aspen Plus, Aspen Tecnology, Inc., Bedford, MA, USA, 2013.
  • [31] H. Cherif, C. Coquelet, P. Stringari, D. Clodic, L. Pellegrini, S. Moioli, S. Langé, Experimental and Simulation Results for the Removal of H2S from Biogas by Means of Sodium Hydroxide in Structured Packed Columns, in: ICBST 2016: 18th International Conference on Biogas Science and Technology, 2016, p. 9.
  • [32] R. P. Field, R. Brasington, Baseline flowsheet model for IGCC with carbon capture, Industrial and Engineering Chemistry Research 50 (19) (2011) 11306–11312. doi:10.1021/ie200288u.
  • [33] M. Puig-Arnavat, J. C. Bruno, A. Coronas, Modified Thermodynamic Equilibrium Model for Biomass Gasification: A Study of the Influence of Operating Conditions, Energy & Fuels 26 (2) (2012) 1385–1394. doi:10.1021/ef2019462.
  • [34] A. Duret, C. Friedli, F. Maréchal, Process design of Synthetic Natural Gas (SNG) production using wood gasification, Journal of Cleaner Production 13 (15) (2005) 1434–1446. doi:10.1016/j.jclepro.2005.04.009.
  • [35] M.-J. Yoo, L. Lessard, M. Kermani, F. Maréchal, Osmoselua – an integrated approach to energy systems integration with lcia and gis, in: K. V. Gernaey, J. K. Huusom, R. Gani (Eds.), 12th International Symposium on Process Systems Engineering and 25th European Symposium on Computer Aided Process Engineering, Vol. 37 of Computer Aided Chemical Engineering, Elsevier, 2015, pp. 587-592. doi:10.1016/B978-0-444-63578-5.50093-1.
  • [36] D. Flórez-Orrego, S. Sharma, S. D. Oliveira, F. Marechal, Combined Exergy Analysis and Energy Integration for Design Optimization of Nitrogen Fertilizer Plants, in: 30th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2017, San Diego, CA, USA, 2017.
  • [37] V. Santos, R. Ely, A. Szklo, A. Magrini, Chemicals, electricity and fuels from biorefineries processing Brazils sugarcane bagasse: Production recipes and minimum selling prices, Renewable and Sustainable Energy Reviews 53 (2016) 1443–1458. doi:10.1016/j.rser.2015.09.069.
  • [38] D. Hotza, J. Diniz da Costa, Fuel cells development and hydrogen production from renewable resources in Brazil, International Journal of Hydrogen Energy 33 (19) (2008) 4915–4935. doi:10.1016/j.ijhydene.2008.06.028.
  • [39] S. Tai, K. Matsushige, T. Goda, Chemical exergy of organic matter in wastewater, International Journal of Environmental Studies 27 (3-4) (1986) 301–315. doi:10.1080/00207238608710299.
  • [40] S. A. Channiwala, P. P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel 81 (8) (2002) 1051–1063. doi:10.1016/s0016-2361(01)00131-4.
  • [41] J. Szargut, D. R. Morris, F. R. Steward, Energy analysis of thermal, chemical, and metallurgical processes, Hemisphere Publishing, New York, NY, 1988.
  • [42] D. Flórez-Orrego, J. A. M. Silva, S. D. Oliveira, Exergy and environmental comparison of the end use of vehicle fuels: The Brazilian case, Energy Conversion and Management 100 (2015) 220–231. doi:10.1016/j.enconman.2015.04.074.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55d3e89e-c042-42c0-b852-87328e4e70d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.