Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Various automated/semi-automated medical diagnosis systems based on human physiology have been gaining enormous popularity and importance in recent years. Physiological features exhibit several unique characteristics that contribute to reliability, accuracy and robustness of systems. There has also been significant research focusing on detection of conventional positive and negative emotions after presenting laboratory-based stimuli to participants. This paper presents a comprehensive survey on the following facets of mental stress detection systems: physiological data collection, role of machine learning in Emotion Detection systems and Stress Detection systems, various evaluation measures, challenges and applications. An overview of popular feature selection methods is also presented. An important contribution is the exploration of links between biological features of humans with their emotions and mental stress. The numerous research gaps in this field are highlighted which shall pave path for future research.
Wydawca
Czasopismo
Rocznik
Tom
Strony
444--469
Opis fizyczny
Bibliogr. 150 poz., rys., tab., wykr.
Twórcy
autor
- School of Computer Science and Engineering, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
autor
- School of Computer Science and Engineering, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
Bibliografia
- [1] Liu S, Tong J, Menga, Yang J, Zhao X, He F, et al. Study on an effective cross-stimulus emotion recognition model using EEGs based on feature selection and support vector machine. Int J Mach Learn Cybern 2016;9(5):721–6.
- [2] Moharreri S, Dabanloo NJ, Maghooli K. Modeling the 2D space of emotions based on the poincare plot of heart rate variability signal. Biocybern Biomed Eng 2018;38 (4):773–1014.
- [3] Feng H, Golshan HM, Mahoor MH. A wavelet-based approach to emotion classification using EDA signals. Expert Syst Appl 2018;112:77–86.
- [4] Zhang Q, Chen X, Zhan Q, Yang T, Xia S. Respiration-based emotion recognition with deep learning. Comput Ind 2017;92:84–90.
- [5] Kreibig SD. Autonomic nervous system activity in emotion: a review. Biol Psychol 2010;84(3):394–421.
- [6] Goshvarpour A, Abbasi A, Goshvarpour A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed J 2017;40:355–68.
- [7] Yoo G, Seo S, Hong S, Kim H. Emotion extraction based on multi bio-signal using back-propagation neural network. Multimed Tools Appl 2016;1–13. http://dx.doi.org/10.1007/s11042-016-4213-5.
- [8] Lim WL, Liu Y, Chandrasekaran S, Subramaniam H, Hui S, Liew P, et al. EEG-based mental workload and stress monitoring of crew members in maritime virtual simulator. Proc Trans Comput Sci 2018;15–28. http://dx.doi.org/10.1007/978-3-662-56672-5_2.
- [9] Mahajan R. Emotion recognition via EEG using neural network classifier. Soft computing: theories and applications, vol. 583. 2018;p. 429–38. http://dx.doi.org/10.1007/978-981-10-5687-1_38.
- [10] Nakisa B, Rastgoo MN, Tjondronegoro D, Chandran V. Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst Appl 2018;93:143–55. http://dx.doi.org/10.1016/j.eswa.2017.09.062.
- [11] Mehmood RM, Lee HJ. A novel feature extraction method based on late positive potential for emotion recognition in human brain signal patterns. Comput Electr Eng 2016;53:444–57.
- [12] López-Gil J, Gomá JV, Gil R, Guilera T, Batalla I, González JS, et al. Method for improving EEG based emotion recognition by combining it with synchronized biometric and eye tracking technologies in a non-invasive and low cost way. Front Comput Neurosci 2016;10(465).
- [13] http://www.emotiv.com [accessed 31.12.18].
- [14] Thammasan N, Moriyama K, Fukui K, Numao M. Familiarity effects in EEG-based emotion recognition. Brain Inform 2017;4:39–50. http://dx.doi.org/10.1007/s40708-016-0051-5.
- [15] http://www.ant-neuro.com/products/waveguard [accessed 31.12.18].
- [16] www.mindtecstore.com/en/brainlink [accessed 31.12.18].
- [17] www.shimmersensing.com/products/ shimmer3-wireless-gsr-sensor [accessed 31.12.18].
- [18] http://www.shimmersensing.com [accessed 31.12.18].
- [19] http://www.thoughttechnology.com [accessed 31.12.18].
- [20] Gamble KR, Vettel JM, Patton DJ, Eddy MD, Davis FC, Garcia JO, et al. Different profiles of decision making and physiology under varying levels of stress in trained military personnel. Int J Psychophysiol 2018;131:73–80. http://dx.doi.org/10.1016/j.ijpsycho.2018.03.017.
- [21] Brouwer AM, Hogervorst MA. A new paradigm to induce mental stress: the Sing-a-Song Stress Test (SSST). Front NeuroSci 2014;8:224–30.
- [22] Gaurav, Anand RS, Kumar V. EEG-metric based mental stress detection. Netw Biol 2018;8(1):25–34.
- [23] Horlings R, Datcu D, Leon J, Rothkrantz M. Emotion recognition using brain activity. Proc. International Conference on Computer Systems and Technologies; 2008.
- [24] Xiang Ang AQ, Yeong YQ, Ser W. Emotion classification from EEG signals using time-frequency-DWT features and ANN. J Comput Commun 2017;5(3):75–9.
- [25] Herranz IM, Pita RG, Ferreira J, Zurera MR, Seoane F. Assessment of mental, emotional and physical stress through analysis of physiological signals using smartphones. Sensors 2015;15(10):25607–2. http://dx.doi.org/10.3390/s151025607.
- [26] Jeunet C, Mühl C, Lotte F. Design and validation of a mental and social stress induction protocol towards load-invariant physiology-based detection. Proc. International Conference on Physiological Computing Systems; 2014.
- [27] Sharma N, Gedeon T. Objective measures, sensors and computational techniques for stress recognition and classification. Comput Methods Prog Biomed 2012; 108(3):1287–301.
- [28] Singh MI, Singh M. Development of a real time emotion classifier based on evoked EEG. Biocybern Biomed Eng 2017;37(3):498–509.
- [29] Posner J, Russell J, Peterson B. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev Psychopathol 2005;17(3):715–34.
- [30] Mosciano F, Mencattini A, Ringeval F, Schuller, Martinelli E, Natale CD. Sens Actuators A Phys 2017;267:48–59. http://dx.doi.org/10.1016/j.sna.2017.09.056.
- [31] Mangala Gowri SG, Raj CP. Energy density feature extraction using different wavelets for emotion detection. Int J Appl Eng Res 2018;13(1):520–7.
- [32] Zubair M, Yoon C. EEG based classification of human emotions using discrete wavelet transform. IT convergence and security. 2017;21–8. http://dx.doi.org/10.1007/978-981-10-6454-8_3.
- [33] Yohanes REJ, Ser W, Huang GB. Discrete wavelet transform coefficients for emotion recognition from EEG signals. Proc. 34th Annual International Conference of the IEEE EMBS; 2012.
- [34] Matlovic T. Emotion detection using EPOC EEG device. Proc. IIT SRC; 2016. pp. 1–6.
- [35] Zhuang N, Zeng Y, Tong L, Zhang C, Zhang H, Yan B. Emotion recognition from EEG signals using multidimensional information in EMD domain. BioMed Res Int 2017. http://dx.doi.org/10.1155/2017/8317357.
- [36] Tonoyan Y, Chanwimalueang T, Mandic DP, Marc M, Hulle V. Discrimination of emotional states from scalp and intracranial EEG using multiscale ReÂnyi entropy. PLoS One 2017;12(11). http://dx.doi.org/10.1371/journal.pone.0186916.
- [37] http://nemo.psp.ucl.ac.be/FilmStim/ [accessed 31.12.18].
- [38] Savran A, Ciftci K, Chanel G, Mota J, Viet L, Sankur B, et al. Emotion detection in the loop from brain signals and facial images; 2006, http://www.enterface.net/results/2006.
- [39] Omez AG, Quintero L, Opez NL, Castro J. An approach to emotion recognition in single-channel EEG signals: a mother child interaction. J Phys 2016;705.
- [40] Murugappan, Ramachandran N, Sazali Y. Classification of human emotion from EEG using discrete wavelet transform. J Biomed Sci Eng 2010;3:390–6.
- [41] Lee1 YY, Hsieh S. Classifying different emotional states by means of EEG based functional connectivity patterns. PLoS One 2014;9(4).
- [42] Koelstra S, Muhl C, Soleymani M, Lee JS, Yazdani A, Ebrahimi T, et al. DEAP: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 2012;3(1):18–31.
- [43] Lang PJ, Bradley MM, Cuthbert BN. International affective picture system (IAPS): technical manual and affective ratings. Gainesville: The Center for Research in Psychophysiology, University of Florida; 1999.
- [44] Liang YC, Hsieh S, Weng CY, Sun CR. Taiwan corpora of Chinese emotions and relevant psychophysiological data – standard Chinese emotional film clips database and subjective evaluation normative data. Chin J Psychol 2013;55:597–617.
- [45] Lia M, Xua H, Liua X, Lu S. Emotion recognition from multichannel EEG signals using K-nearest neighbor classification. Technology and Health Care, IOS Press; 2018. p. 26.
- [46] Ackermann P, Kohlschein C, Gila Bitschx JA, Wehrlex K, Jeschke S. EEG-based automatic emotion recognition: feature extraction, selection and classification methods. Proc. IEEE 18th International Conference on e-Health Applications and Services (Healthcom); 2016.
- [47] Liu Y, Sourina O, Nguyen MK. Real-time EEG-based emotion recognition and its applications. Transactions on networking computational science XII lecture notes in computer science, vol. 6670. 2011;p. 256–77.
- [48] Bhowmik P, Das S, Nandi D, Chakraborty A, Konar A, Nagar AK. Electroencephalographic signal based clustering of stimulated emotion using duffing oscillator; 2010.
- [49] Bradley MM, Lang PJ. The international affective digitized sounds. IADS-2. Affective ratings of sounds and instruction manual. 2nd ed. Gainesville: University of Florida; 2007.
- [50] Li Z, Tian X, Shu L, Xu X, Hu B. Emotion recognition from EEG using RASM and LSTM. Commun Comput Inform Sci 2018;819:310–8.
- [51] Zhang Y, Zhang S, Ji X. EEG-based classification of emotions using empirical mode decomposition and autoregressive model. Multimed Tools Appl 2018;77 (20):26697–710. http://dx.doi.org/10.1007/s11042-018-5885-9.
- [52] Zoubi OA, Awad M, Kasabov NK. Anytime multipurpose emotion recognition from EEG data using a liquid state machine based framework. Artif Intel Med 2018;86:1–8. http://dx.doi.org/10.1016/j.artmed.2018.01.001.
- [53] Thejaswini S, Ravi Kumar KM, Rupali S, Abijith V. EEG based emotion recognition using wavelets and neural networks classifier. Cognit Sci Artif Intel 2017;101–12. http://dx.doi.org/10.1007/978-981-10-6698-6_10.
- [54] Zheng, Long W, Lu BL. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Trans Auton Ment Dev 2015;7(3):162–75.
- [55] AbdelAal MA, Alsawy AA, Hefny HA. EEG-based emotion recognition using a wrapper-based feature selection method. Adv Intel Syst Comput 2018;639:247–57. http://dx.doi.org/10.1007/978-3-319-64861-3 23.
- [56] Mert A, Akan A. Emotion recognition from EEG signals by using multivariate empirical mode decomposition. Pattern Anal Appl 2018;21(1):81–9. http://dx.doi.org/10.1007/s10044-016-0567-6.
- [57] Chai X, Wang Q, Zhao Y, Liu X, Bai O, Li Y. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition. Comput Biol Med 2016;79:205–14. http://dx.doi.org/10.1016/j.compbiomed.
- [58] Kaur B, Singh D, Roy PP. EEG based emotion classification mechanism in BCI.Proc. International Conference on Computational Intelligence and Data Science. Proc Comput Sci 2018;132:752–8.
- [59] Hemanth DJ, Anitha J, Son LH. Brain signal based human emotion analysis by circular back propagation and Deep Kohonen Neural Networks. Comput Electr Eng 2018;68:170–80.
- [60] Bichindaritz I, Breen C, Cole E, Keshan N, Parimi P. Feature selection and machine learning based multilevel stress detection from ECG Signals. Innovation in medicine and healthcare. Smart Innov Syst Technol 2018;71:202–10. http://dx.doi.org/10.1007/978-3-319-59397-5_22.
- [61] Li M, Lu BL. Emotion classification based on gamma-band EEG. Proc. 31st Annual International Conference of the IEEE EMBS; 2009.
- [62] Momennezhad A. EEG-based emotion recognition utilizing wavelet coefficients. Multimed Tools Appl 2018; 77(20):27089–106. http://dx.doi.org/10.1007/s11042-018-5906-8.
- [63] Kwon YH, Shin SB, Kim SD. Electroencephalography based fusion two-dimensional (2D)-Convolution Neural Networks (CNN) model for emotion recognition system. Sensors 2018;18(5). http://dx.doi.org/10.3390/s18051383.
- [64] Valenza G, Citi L, Lanata A, Scilingo EP, Barbieri R. Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics. Sci Rep 2014;4:4998. http://dx.doi.org/10.1038/srep04998.
- [65] Zhao M, Adib F, Katabi D. Emotion recognition using wireless signals. Proc. MobiCom'16; 2016.
- [66] Ragot M, Martin N, Em S, Pallamin N, Diverrez JM. Emotion recognition using physiological signals: laboratory vs. wearable sensors, advances in human factors in wearable technologies and game design. Adv Intel Syst Comput 2018;608:15–23. http://dx.doi.org/10.1007/978-3-319-60639-2_2.
- [67] Girardi D, Lanubile F, Novielli N. Emotion detection using noninvasive low cost sensors. Seventh International Conference on Affective Computing and Intelligent Interaction. 2017. pp. 125–32.
- [68] Basu S, Bag A, Aftabuddin M, Mahadevappa M, Mukherjee J, Guha R. Effects of emotion on physiological signals. Proc IEEE 2016.
- [69] Khezria M, Firoozabadi M, Sharafata AR. Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals. Comput Methods Prog Biomed 2015;122:149–64. http://dx.doi.org/10.1016/j.cmpb.2015.07.006.
- [70] Mohammadi Z, Frounchi J, Amiri M. Wavelet-based emotion recognition system using EEG signal. Neural Comput Appl 2017;28:1985–90. http://dx.doi.org/10.1007/s00521-015-2149-8.
- [71] Kumar N, Khaund K, Hazarika SM. Bispectral analysis of EEG for emotion recognition. Proc Comput Sci 2016;84:31–5. http://dx.doi.org/10.1016/j.procs.2016.04.062.
- [72] Lahane P, Sangaiah AK. An approach to EEG based emotion recognition and classification using kernel density estimation.Proc. International Conference on Intelligent Computing, Communication & Convergence. Proc Comput Sci 2015;48:574–81. http://dx.doi.org/10.1016/j.procs.2015.04.138.
- [73] Li C, Xu C, Feng Z. Analysis of physiological for emotion recognition with the IRS model. Neurocomputing 2016;178:103–11. http://dx.doi.org/10.1016/j.neucom.2015.07.112.
- [74] Hariharan A, Philipp Adam MT. Blended emotion detection for decision support. IEEE Trans Hum-Mach Syst 2015;45(4):510–8. http://dx.doi.org/10.1109/THMS.2015.2418231.
- [75] Goshvarpour A, Abbasi A, Goshvarpour A. Fusion of heart rate variability and pulse rate variability for emotion recognition using lagged poincare plots. Australas Phys Eng Sci Med 2017;40(3):617–29.
- [76] Crum AJ, Salovey P, Achor S. Rethinking stress: the role of mindsets in determining the stress response. J Pers Social Psychol 2013;104(4):716–33.
- [77] Subhani AR, Mumtaz W, Bin Mohamed Saad WN, Kamel N, Malik AS. Machine learning framework for the detection of mental stress at multiple levels. IEEE Access 2017;5:13545–56.
- [78] Choi J, Ahmed B, Osun RG. Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans Inform Technol Biomed 2012;16(2):279–87.
- [79] Stress HJ. Neuroendocrine patterns, and emotional response. Stressors and the adjustment disorders. 1990;477–96.
- [80] al'Absi M. Stress and addiction: biological and psychological mechanisms. Stress Health 2007;23(4).
- [81] Enoch M. Pharmacogenomics of alcohol response and addiction. Am J Pharmacogenomics 2003;3(4):217–32.
- [82] Enoch M. Genetic and environmental influences on the development of alcoholism. Annu N Y Acad Sci 2007;193:201–5.
- [83] Gandhi S, Baghini MS, Mukherji S. Mental stress assessment – a comparison between HRV based and respiration based techniques. Comput Cardiol 2015; 1029–1032.
- [84] Sharma N, Gedeon T. Modeling a stress signal. Appl Soft Comput 2014;14(A):53–61.
- [85] Jung Y, Yoon YI. Multi-level assessment model for wellness service based on human mental stress level. Multimed Tools Appl 2017;76(9):11305–17.
- [86] Innes G, Millar WM, Valentine M. Emotion and blood-pressure. Br J Psychiatry 1959;105:840–51.
- [87] Bernardi L, Szulc WJ, Valenti C, Castoldi S, Passino C, Spadacini G, et al. Effects of controlled breathing, mental activity and mental stress with or without verbalization on heart rate variability. J Am College Cardiol 2000;35 (6):1462–9.
- [88] Sahoo R, Sethi S. Functional analysis of mental stress based on physiological data of GSR sensor. Adv Intel Syst Comput 2015;337:109–19.
- [89] http://www.emwave.com.au/ [accessed 31.12.18].
- [90] http://www.mindplace.com/ Mindplace-Thoughtstream-USB-Personal-Biofeedback/dp/ B005NDGPLC [accessed 31.12.18].
- [91] http://stresseraser.com/ [accessed 31.12.18].
- [92] Akmandor AO, Jha NK. Keep the stress away with SoDA: stress detection and alleviation system. IEEE Trans Multi-scale Comput Syst 2017;3(4):269–82.
- [93] Siegert I, Bock R, Wendemuth A. Using a PCA-based dataset similarity measure to improve cross-corpus emotion recognition. Comput Speech Lang 2018;51:1–23. http://dx.doi.org/10.1016/j.csl.2018.02.002.
- [94] Okada Y, Yoto TY, Taka-aki, Satoshi S, Hiroyuki S, Kayoko S, et al. Wearable ECG recorder with acceleration sensors for monitoring daily stress. J Med Biol Eng 2013;4718–21.
- [95] Alberdi A, Aztiria A, Basarab A. Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J Biomed Inform 2016;59:49–75.
- [96] Yi S, He W, Zhan L, Qi Z, Zhu Z, Luo W, et al. Emotional noun processing: an ERP study with rapid serial visual presentation. PLoS One 2015;10(3). http://dx.doi.org/10.1371/journal.pone.0118924.
- [97] Fares Al-shargie1, Tang TB, Badruddin N, Kiguchi M. Towards multilevel mental stress assessment using SVM with ECOC: an EEG approach. Med Biol Eng Comput 2017;56(1).
- [98] Rashid NA, Taib MN, Lias S, Sulaiman N, Murat ZH, Shilawani R, et al. Learners' learning style classification related to IQ and stress based on EEG. Proc Social Behav Sci 2011;29:1061–70.
- [99] Karthikeyan P, Murugappan M, Yaacob S. ECG signal denoising using wavelet thresholding techniques in human stress assessment. Int J Electr Eng Inform 2012; 4(2):306–19.
- [100] Zhang T, Zheng W, Cui Z, Zong Y, Li Y. Spatial–temporal recurrent neural network for emotion recognition. IEEE Trans Cybern 2018;01–9.
- [101] Kim KH, Bang SW, Kim SR. Emotion recognition system using short-term monitoring of physiological signals. Med Biol Eng Comput 2004;42(3):419–27.
- [102] Rodrigo AM, Zangróniz R, Pastor JM, Latorre JM, Caballero AF. Emotion detection in ageing adults from physiological sensors. Ambient Intelligence Software and Applications: 6th International Symposium on Ambient Intelligence. 2015. pp. 253–63.
- [103] Wijsman J, Grundlehner B, Penders J, Hermens H. Trapezius muscle EMG as predictor of mental stress. ACM Trans Embed Comput Syst 2013;12(4):1–20.
- [104] Lee BG, Chung WU. Wearable glove-type driver stress detection using a motion sensor. IEEE Trans Intel Transport Syst 2017;18(7):1835–45.
- [105] Phongsuphap S, Pongsupap Y. Analysis of heart rate variability during meditation by a pattern recognition method. Comput Cardiol 2011;38:197–200.
- [106] Ramirez AS, Irigoyen E, Martinez R, Zalabarria Z. An enhanced fuzzy algorithm based on advanced signal processing for identification of stress. Neurocomputing 2018;271:48–57.
- [107] Jebelli H, Hwang S, Lee SH. EEG-based workers' stress recognition at construction sites. Autom Constr 2018;93:315–24.
- [108] Alberdi A, Aztiria A, Basarab A, Cook DJ. Using smart offices to predict occupational stress. Int J Ind Ergon 2018;67:13–26.
- [109] Lee DS, Chong TW, Lee BG. Stress events detection of driver by wearable glove system. IEEE Sens J 2017;17 (1):194–205.
- [110] Karrer SM, Mosa AH, Faller LM, Ali M, Hamid R, Zang H, et al. A driver state detection system—combining a capacitive hand detection sensor with physiological sensors. IEEE Trans Instrum Meas 2017;66(4):624–37.
- [111] Plarre K, Raij A, Hossain SM, Ali AA, Nakajimaz M, Al'Absiz M, et al. Continuous inference of psychological stress from sensory measurements collected in the natural environment. Proc. 10th ACM/IEEE International Conference of Information Processing in Social Networks; 2011.
- [112] Colunas MF, Fernandes JMA, Oliveira IC, Cunha JPS. Droid jacket: using an android based smartphone for team monitoring. Wireless Communications and Mobile Computing Conference. Proc. 7th International Wireless Communications and Mobile Computing Conference. 2011. pp. 2157–61.
- [113] Giannakakis G, Pediaditis M, Manousos D, Kazantzaki E, Chiarugi F, Simos PG, et al. Stress and anxiety detection using facial cues from videos. Biomed Signal Process Control 2017;31:89–101.
- [114] Stanton N, Hedge A, Brookhuis K, Salas E, Hendrick H. Handbook of human factors and ergonomics methods. CRC Press; 2004. p. 30–40.
- [115] Al-Shargie F, Tang TB, Miguch M. Stress assessment based on decision fusion of EEG and fNIRS signals. IEEE Access 2017;5:19889–96.
- [116] Hong K, Liu G, Chen W, Hong S. Classification of the emotional stress and physical stress using signal magnification and canonical correlation analysis. Pattern Recognit 2018;77:140–9.
- [117] Affanni A, Bernardini R, Piras A, Rinaldo R, Zontone. Driver's stress detection using skin potential response signals. Measurement 2018;122:264–74. http://dx.doi.org/10.1016/j.measurement.2018.03.040.
- [118] Castaldo R, Montesinos L, Pecchia L. Ultra-short entropy for mental stress detection. World Congress on Medical Physics and Biomedical Engineering. 2018. pp. 287–91. http://dx.doi.org/10.1007/978-981-10-9038-7_53.
- [119] Dmello SK, Kory J. A review and meta-analysis of multimodal affect detection systems. ACM Comput Surv 2015;47(3):1–36.
- [120] Perez-Gaspar LA, Caballero-Morales SO, Romero FT. Multimodal emotion recognition with evolutionary computation for human–robot interaction. Expert Syst Appl 2016;66:42–61. http://dx.doi.org/10.1016/j.eswa.2016.08.047.
- [121] Fritz T, Begel A, Müller KH, Yigit-Elliott S, Züger M. Using psycho-physiological measures to assess task difficulty in software development. Proc. 36th International Conference on Software Engineering. 2014. pp. 402–13.
- [122] Russell JA. A circumplex model of affect. J Pers Social Psychol 1980.
- [123] Reisenzein R. Social Sci Inform 2007;46(3).
- [124] Kleinginna PR, Kleinginna AM. A categorized list of emotion definitions, with suggestions for a consensual definition. Motiv Emot 1981;5(4).
- [125] Scherer KR. Emotions as episodes of subsystem synchronization driven by nonlinear appraisal processes. Emotion, development, and self-organization: dynamic systems approaches to emotional development. New York, NY, USA: Cambridge University Press; 2000. p. 70–99. http://dx.doi.org/10.1017/CBO9780511527883.005.
- [126] Soleymani M, Pantic M, Pun T. Multimodal emotion recognition in response to videos. IEEE Trans Affect Comput 2012;3(2):211–30.
- [127] Busso C, Deng Z, Yildirim S, Bulut M, Lee CM, Kazemzadeh A, et al. Analysis of emotion recognition using facial expressions. Speech and multimodal information. ACM ICMI; 2004.
- [128] Sebe N, Cohen I, Huang TS. Multimodal emotion recognition. Handbook of pattern recognition and computer vision, vol. 16 (2). 2004;p. 387–400.
- [129] Torres CA, Orozco AA, lvarez MA. Feature selection for multimodal emotion recognition in the arousal-valence space. Proc. 35th Annual International Conference of the IEEE EMBS; 2013.
- [130] Kessous L, Castellano G, Caridakis G. Multimodal emotion recognition in speech-based interaction using facial expression, body gesture and acoustic analysis. J Multimod User Interfaces 2010;3(2):33–48.
- [131] Barros P, Jirak D, Weber C, Wermter S. Multimodal emotional state recognition using sequence-dependent deep hierarchical features. Neural Netw 2015;72:140–51.
- [132] Dai Y, Wang X, Zhang P, Zhang W. Wearable biosensor network enabled multimodal daily-life emotion recognition employing reputation-driven imbalanced fuzzy classification. Measurement 2017;109:408–24.
- [133] Haq S, Jackson PJB. Multimodal emotion recognition. Machine audition: principles, algorithms and systems. IGI Global; 2011. p. 398–423.
- [134] Jones CH, Bastian B, Jones EH. The Discrete Emotions Questionnaire: a new tool for measuring state self-reported emotions. PLoS One 2016.
- [135] Morris JD. Observations: SAM: Self Assessment Manikin: an efficient cross cultural measurement of emotional response. J Advert Res 1995.
- [136] Schutte NS, Malouff JM, Bhullar N. The assessing emotions scale. The assessment of emotional intelligence; 2008.
- [137] Mauss IB, Robinson MD. Measures of emotion: a review. Cognit Emot 2009;23(2):209–37.
- [138] Cohen S. Perceived stress scale; 1994.
- [139] Gross C, Seeba K, Alexander F. The Standard Stress Scale (SSS): measuring stress in the life course, NEPS working paper no. 45; 2014.
- [140] Rahe RH, Tolles RL. The brief stress and coping inventory: a useful stress management instrument. Int J Stress Manage 2002;9(2):61–70.
- [141] Moors A. Theories of emotion causation: a review. Cognit Emot 2009;23(4):625–62.
- [142] Khosla D, Don M, Kwong B. Spatial mislocalization of EEG electrodes – effects on accuracy of dipole estimation. Clin Neurophysiol 1999;110(2):261–71.
- [143] Butler G. Definitions of stress. Occas Pap R Coll Gen Pract 1993;61:1–5.
- [144] Lazarus RS, Folkman S. Stress, appraisal, and coping. New York: Springer Publishing Company; 1984, ISBN: 08261419.
- [145] Selye H. The stress of life. J Bone Joint Surg 1956;39(2):479.
- [146] www.hse.gov.uk/stress/ [accessed 31.12.18].
- [147] Song J, Davey C, Poulsen C, Luu P, Turovets S, Anderson E, et al. EEG source localization: sensor density and head surface coverage. J Neurosci Methods 2015;256:9–21. http://dx.doi.org/10.1016/j.jneumeth.2015.08.015.
- [148] Teplan M. Fundamentals of EEG measurement. Meas Sci Rev 2002;2:1–11.
- [149] Hu S, Lai Y, Valdes-Sosa PA, Bringas-Vega ML, Yao D. How do reference montage and electrodes setup affect the measured scalp EEG potentials. J Neural Eng 2018;15 (2):026013. http://dx.doi.org/10.1088/1741-2552/aaa13f.
- [150] Stehlin SAF, Nguyen XP, Niemz MH. EEG with a reduced number of electrodes: where to detect and how to improve visually, auditory and somatosensory evoked potentials. Biocybern Biomed Eng 2018;38(3):700–7. http://dx.doi.org/10.1016/j.bbe.2018.06.001.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55d31771-ef52-4c5c-b8f9-47dcc1450f36