PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation of Multi-Cold Rolling Passes on Mechanical Characteristics and Surface Quality of AlCuV Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the effect of rolling angle orientation namely; 0, 45, and 90 degrees, and three rolling passes on the mechanical behavior of Al-Cu after vanadium addition were investigated. Al-4%Cu and Al-4%Cu-0.1%V sheets were produced and rolled from 4 mm to 3 mm followed by 3 to 2 mm, and finally from 2 mm to 1.3 mm. After each pass, the tensile test was performed in three directions from which the maximum tensile force, deformation energy, microhardness, and average surface roughness (Ra) were determined. A pronounce finding is that the addition of both additions of 0.1% vanadium to Al-4%Cu alloy and multi-rolling passes resulted in reducing the deformation energy by 85.4, and the maximum tensile forces reduced by 56.6%, this resulted in reduction of production cost of AlCuV alloys, furthermore, it resulted in reducing the anisotropy of AlCuV alloy. Additionally, the average microhardness was enhanced for Al-Cu and AlCuV alloy, whereas the Ra was in maximum enhanced for AlCuV alloy of about 64.9%.
Twórcy
  • Mechanical Engineering Department, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, Queen Alia Airport St 594, Amman, Jordan
  • Mechanical Engineering Department, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, Queen Alia Airport St 594, Amman, Jordan
  • Mechanical Engineering Department, School of Engineering, University of Jordan, Queen Rania St., Amman, Jordan
Bibliografia
  • 1. Rout M., Pal S.K., Singh S.B. Cross rolling: a metal forming process. modern manufacturing engineering, materials forming, machining and tribology, Springer International Publishing Switzerland, 2015. DOI: 10.1007/978-3-319-20152-8_2.
  • 2. Nwachukwu P.U., Oluwole O.O. Effects of rolling process parameters on the mechanical properties of hot-rolled St60Mn steel. Case Studies in Construction Materials Journal. 2017; 6: 134–146. DOI: 10.1016/j.cscm.2017.01.006.
  • 3. Zhao M., Xing Y., Jia Z., Liu. X., Wu J. Alloys Compound. 2016; 686: 312–317. DOI: 10.1016/j.jallcom.2016.06.063.
  • 4. Najib L.M., Alisibramulisi A., Norliyati M.A., Abu Bakar I.A., Hasim S. The effect of rolling direction to the tensile properties of aa5083 specimen. In: Proc. of the International Civil and Infrastructure Engineering. 2015; 779–787. DOI: 10.1007/978-981-287-290-6_67.
  • 5. Medjahed A., Moula H., Zegaoui A., Derradji M., Henniche A., Wu R., Hou L., Zhang J., Zhang M. Influence of the rolling direction on the microstructure, mechanical, anisotropy and gamma rays shielding properties of an Al-Cu-Li-Mg-X alloy. Material Science Engineering. A. 2018; 732: 129–137. DOI: 10.1016/j. msea.2018.06.074.
  • 6. Wang B., Chen X., Pan F. Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy. Transactions of Nonferrous Metals Society of China 2015; 25: 2481−2489. DOI: 10.1016/ s1003-6326(15)63866-3.
  • 7. Tu J., Zhou T., Liu L., Zhou T., Yang L., Lian Y., Zhang J. Effect of rolling speeds on texture modification and mechanical properties of the AZ31 sheet by a combination of equal channel angular rolling and continuous bending at high temperature. Alloys Compound. 2018; 768: 598–607. DOI: 10.1016/j.jallcom.2018.07.242.
  • 8. Radhi H., Jabur L., International Journal of Mechanical and Mechatronics Engineering. 2018; 18: 104–111.
  • 9. Mei L., Chen X.P., Huang G. Improvement of mechanical properties of a cryorolled Al-Mg-Si alloy through warm rolling and aging. Alloys Compound. 2019; 777: 259–263 (2019). DOI: 10.1016/j.jallcom.2018.11.012.
  • 10. Wang T., Zhu T., Sun J., Wu R., Zhang M., Magnes J. Influence of rolling directions on microstructure, mechanical properties and anisotropy of Mg-5Li-1Al-0.5Y alloy. Journal of Magnesium and Alloys. 2015; 3: 345–35. DOI: 10.1016/j.jma.2015.11.001.
  • 11. Zuiko I., Kaibyshev R. Microstructural evolution and strengthening mechanisms operating during cryogenic rolling of solutionized Al-Cu-Mg alloy. Material Science Engineering A 2019; 745: 82–89. DOI: 10.1016/j.msea.2018.12.103.
  • 12. Rao P., Kaurwar A., Singh D., Jayaganthan R., Enhancement in Strength and Ductility of Al- Mg-Si Alloy by Cryorolling followed by Warm Rolling. Procedia Engineering. 2014; 75: 123– 128. DOI: 10.1016/j.proeng.2013.11.027.
  • 13. Magalhaes D.C., Kliauga A.M., Sordi V.L. Cryogenic rolling applied to aluminum, copper, and brass: effects on the microstructure and mechanical strength, Congresso Brasileiro de Engenharia e Ciência dos Materiais, Brazil, 9–13 Nov. 2014.
  • 14. Shafiei E., Dehghani K. Effects of deformation conditions on the rolling force during variable gauge rolling. Journal of Manufacturing and Materials Processing. 2018; 2: 48. DOI: 10.3390/jmmp2030048.
  • 15. Mandal M., Mitra R. Effect of mushy state rolling on the microstructure, microhardness, and microtexture in al-4.5wt.%cu-5wt.%tib2 in situ composite. Journal of the Minerals, Metals & Materials Society. 2016; 68: 1902-1908. DOI: 10.1007/s11837-016-1911-4.
  • 16. Huo M., Zhao J., Xie H., Jia F., Li S. Effects of micro flexible rolling and annealing on microstructure, microhardness and texture of aluminium alloy. Materials Characterization. 2019; 148: 142–155. DOI: 10.1016/j. matchar.2018.12.007
  • 17. Zou J., Cheng J., Feng V., Zou V., Cheng J., Feng G., Xie J. Yu F. Effect of V addition on microstructure and properties of cu-1.6ni-1.2co-0.65si alloys. Metals Journal. 2019; 9: 679. DOI: 10.3390/met9060679.
  • 18. Priyadarsini C., Ramana V.V., Prabha, K.A., Swetha, S. A review on ball, roller, low plasticity burnishing process. Materials Today Proceeding. 2019; 18: 5087–5099.
  • 19. Tang J., Luo H.Y., Zhang, Y.B. Enhancing the surface integrity and corrosion resistance of Ti-6Al-4V titanium alloy through cryogenic burnishing. International Journal of Advanced Manufacturing andT. 2017; 88: 2785–2793.
  • 20. Swirad S., Wdowik R. Determining the effect of ball burnishing parameters on Surface roughness using the Taguchi method. Procedia Manuf. 2019; 34: 287–292.
  • 21. Sun L., Yunyue, Liang Chen, G., Zhao, G. Effects of solution and aging treatments on the mi- crostructure and mechanical properties of cold rolled 2024 Al alloy sheet. Journal of Materials Research and Technology, 2021; 12: 1126–1142.
  • 22. Mahasneh A., Al-Qawabah S. Effect of vanadium addition at a rate of 0.1% on the mechanical characteristics, microstructure, and microhardness of al-cu casted alloys. Modern Applied Science. 2011; 5(2): 92–102. DOI: 10.5539/ mas. V5n2p92.
  • 23.Abendeh R., Alhorani R., Ahmad H.S., Bani Baker M. Effect of steel slag as fine and coarse aggregate on pore structure and freeze-thaw resistance of high-strength concrete. Jordan Journal of Civil Engineering. 2021; 15(4): 650–666.
  • 24. Zaid A.I., Al-Qawabah S.M. Effect of copper addition to aluminum on its metallurgical, mechanical characteristics and surface roughness after rolling. Key Engineering Materials. 2016; 689: 12–16. DOI: 10.4028/www.scientific.net/KEM
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55d14543-43a1-4077-a878-ee2138c17d66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.