PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detekcja jąder komórkowych w obrazach biomedycznych z uwzględnieniem kodowania barw

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Detection of cell nuclei in biomedical images depending on color coding
Języki publikacji
PL
Abstrakty
PL
W artykule omówiono proces ekstrakcji parametrów morfometrycznych cyfrowych obrazów histopatologicznych na przykładzie obrazów raka piersi. Wskazano empirycznie wyznaczoną reprezentację kolorów do skutecznego zautomatyzowanego wykrywania jąder komórkowych. Przedstawiono problematykę związaną z komputerowym wspomaganiem rozpoznawania obrazów biomedycznych. Przedstawiono, zapisane w pliku csv wyniki dla przetworzonych i rozpoznanych jąder komórkowych (opis liczbowy struktur i obiektów morfologicznych). Wskazano kierunki dalszych.
EN
The paper presents process of morphometric parameters extraction of the digital biomedical image of breast cancer. There was present empirical determination of most effective color channel for automated detection of cell nuclei. The problem of computer-aided biomedical image recognition are presented. The results obtained for processed and properly recognized cell nuclei was presented. All features (numerical description of morphological structures and objects) was stored in the csv file. The future work areas are indicated.
Rocznik
Strony
246--249
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Uniwersytet Zielonogórski, Wydział Informatyki, Elektrotechniki i Automatyki, Instytut Sterowania i Systemów Informatycznych, ul. Licealna 9, 65-417 Zielona Góra
  • Uniwersytet Zielonogórski, Wydział Informatyki, Elektrotechniki i Automatyki, Instytut Sterowania i Systemów Informatycznych, ul. Licealna 9, 65-417 Zielona Góra
Bibliografia
  • [1] Irshad H., Veillard A., Roux L., Racoceanu, D., Methods for Nuclei Detection, Segmentation and Classification in Digital Histopathology: A Review Current Status and Future Potential. IEEE reviews in biomedical engineering, 7 (2014), 97-114
  • [2] Dyzmann-Sroka A, Malicki J ., Cancer incidence and mortality in the Greater Poland Region - Analysis of the year 2010 and future trends. Reports of Practical Oncology and Radiotherapy. 19(2014), No.5, 296-300
  • [3] Siegel R.L., Miller K.D., Jemal A., Cancer statistics, 2017, CA Cancer J Clin 67(2017), No.1, 7-30
  • [4] Farris A.B., Cohen C., Rogers T.E., Smith G.H., Whole Slide Imaging for Analytical Anatomic Pathology and Telepathology: Practical Applications Today, Promises, and Perils, Archives of Pathology & Laboratory Medicine, 141 (2017), No.4, 542-550
  • [5] Elmore J.G., Longton G.M., Pepe M.S., et al ., A Randomized Study Comparing Digital Imaging to Traditional Glass Slide Microscopy for Breast Biopsy and Cancer Diagnosis, Journal of Pathology Informatics, 8 (2017), 12
  • [6] 6 Shu J., Fu H., Qiu G., Kaye P., Ilyas M., Segmenting overlapping cell nuclei in digital histopathology images. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, 5445-5448, July 2013
  • [7] 7 Cui Y., Guiying Z., Liu Z., Xiong Z., Hu.J., A Deep Learning Algorithm for One-step Contour Aware Nuclei Segmentation of Histopathological Images, CoRR abs/1803.02786 (2018)
  • [8] Kowal M., Filipczuk P., Nuclei segmentation for computeraided diagnosis of breast cancer, International Journal of Applied Mathematics and Computer Science, 24 (2014), No. 1, 19-31
  • [9] Liu C., Shang F., Ozolek J.A., Rohde G.K., Detecting and segmenting cell nuclei in two-dimensional microscopy images, Journal of Pathology Informatics, 7(2016), 42
  • [10] Zarella M.D., Breen D.E. , Plagov A, Garcia F.U. , An optimized color transformation for the analysis of digital images of hematoxylin & eosin stained slides, J Pathol Inform, 2015, 6:33
  • [11] ] Jitaree S. et al., Cell type classifiers for breast cancer microscopic images based on fractal dimension texture analysis of image color layers, Scanning, 37 (2015), No. 2, 145-151
  • [12] Sammouda M. et al., Cancerous nuclei detection on digitized pathological lung color images, Journal of Biomedical Informatics, 35(2002), No. 2, 92-98
  • [13] Sajith Kecheril S. et al., Segmentation of lung glandular cells using multiple color spaces, International Journal of Computer Science, Engineering and Applications, 2 (2012), No.3, 147-158
  • [14] Qi X. et al ., Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set, IEEE Trans. Biomed. Eng., 59 (2012), No.3, 754-765
  • [15] Veillard A., Kulikova M.S., Racoceau D., Cell nuclei extraction from breast cancer histopathology images using colour, texture, scale and shape information. Diagnostic Pathology, 8 Suppl 1(2013)
  • [16] Dong F, Irshad H, Oh E-Y, Lerwill MF, Brachtel EF, Jones NC, et al . , Computational Pathology to Discriminate Benign from Malignant Intraductal Proliferations of the Breast, PLoS ONE 9(12) (2014)
  • [17] Shu J., Dolman G.E., Duan J., Qiu G., Ilyas M., Statistical colour models: an automated digital image analysis method for quantification of histological biomarkers, BioMedical Engineering OnLine (2016);15:46
  • [18] Amin M.M et al., Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier, Journal of Medical Signals and Sensors, 5 (2015), No. 1, 49-58
  • [19] Kong J. et al., Towards Building Computerized Image Analysis Framework for Nucleus Discrimination in Microscopy Images of Diffuse Glioma, Conference Proceedings 2011, 6605-6608
  • [20] Khan A.M., Eldaly H., Rajpoot N.M., A gammagaussian mixture model for detection of mitotic cells in breast cancer histopathology images, J Pathol Inform. 30 (2013), 4-11
  • [21] Nguyen K., Jain A.K. , Sabata B, Prostate Cancer Detection: Fusion of cytological and textural features, J Pathol Inform, 2011, 2:3
  • [22] Pławiak-Mowna A., Mazurkiewicz M., On Effectiveness of Human Cell Nuclei Detection Depending on Digital Image Color Representation, Przegląd Elektrotechniczny 94(2018), Nr 1, 77-80
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55caaea8-c8b1-48d7-a261-6d26892a99ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.