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THERMAL LENSES CAUSED BY ANY ACOUSTIC SOURCE

ANNA PERELOMOV A

Gdańsk University of Technology,
Gdańsk, ul. G. Narutowicza 11112,80-952 Gdańsk, Poland.

anpe@mifgate.pg.gda.pl

The modern theory concerning to the heaiing cased by powerful sound source is presented.
In contrast to the well-known appro ach allowing to calculate slowly varying heating due to
periodic ultrasound, any acoustic sources may be treated. Subtle temporal structure of thermal
lens forming may be traced. Formulae governing the forming of the thermal lens by arbitrary
(including non-periodic) source are presented. The process is illustrated by somefigures.

INTRODUCTION

The effect of heating of the surrounding cased by the powerful sound is wel1 known and
paid attention in many papers [1,2]. As the secondary effect heating nevertheless is much less
studied then strearning (the rotational bulk movement of the fluid fol1owing ultrasound) probably
due to small amplitude of the observed velocity relating to heating. In many applications of the
ultrasound it is necessary to predict a rate at which heat is produced per unit volume. For
example, it is extremely important in medical therapy to calculate elevation of temperature in
tissues. An elevation of temperature is folIowed by a decrease of density. The change of density
caused by absorption was not taken into account in many sources [3,4] since the ambient state
was traditionally considered as a purely incompressible liquid. Recent1y, the distortion of density
was proved to be important when studying the acoustic heating for the majority of fluids.

Acoustic heating may exist only in absorbing fluids. The reason of the heating is namely a
dissipation of sound energy. The secondary processes in the sound field such as acoustic heating
change the background of acoustic wave propagation and therefore influence on the primary
wave itself. The novel phenomena as focusing of an acoustic beam are observed due to the strong
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ultrasound absorption [5]. Elevation of temperature being non-uniform across the sound beam
leads to the non-uniformity of acoustic sound. This way the thermallens forms.

Usually, the theory applies to the periodic acoustic wave caused by transducer (quasi-
periodic meaning absorption). Since the heating is known as a slow process, the elassie approach
is to get quasi-stationary heating by the temporai averaging of the field, the interval of averaging
should be integer num ber (enough large) of sound periods. So, in the frames of the general
theory, forming of the heated area may be traced with the temporai step much longer then the
period of the ultrasound. In an absorbing fluid, the basie relation to be averaged is the total
energy conservation law: aE! a t + V J = O. Here, E = Pe + p (v . v) !2 is the total energy

volulne density, J = pv + Ev is energy flux density vector,e,p, v,p are internal energy per
mass unit, mass den sity, velocity, and pressure, correspondingly. Ali variabies are thought asa
sum ofthe acoustic (subscript a) and non-acoustic parts. Temporai averaging yields in the result:

where q is instantaneous rate per unit volume which heat is produced in a medium by ultrasound
with an acoustic source in the right-hand side [6].

This way to evaluate heat generation is suitable for the periodic acoustic waves. The
temporai averaging fails when pulses or other non-periodic acoustic waves are the source of
heating. Though ilwortant, quasi-periodic waves are not the single type of possible acoustic
sources. In medical therapy, single short puls es are of great importance; actually almost all
experimental data deal with wave packets. We present here a way to evaluate heating and
corresponding thermal field caused by any acoustic field inc1uding non-periodic one. The basie
idea is to separate modes on the level of the initial system of conservation laws, it comes to the
papers [7,8]. Modes as all possible flows following from the linear coriservation laws in fluid are
thought as eigenvectors of this system of equations. Matrix projectors allow to separate every
mode from the overall perturbation at any moment and to get dynarnic equations for the
interacting modes. The author has developed the idea accordingly to some applications to flows
over inhomogeneous and stratified media [7,8]. The steps to get approximate solution are also
pointed out there. The heat (entropy) mode is not certainly secondary mode caused by sound but
may be even dominant in the initial field.

l.THEORY

The mass, momenturn and energy conservation equations read:

op -
-+ Y'(pv) = O
Ot

(1)

[av -] - (11)- -P at+(vY')v =-Y'p+l1~V+ <;+3 Y'(Y'v)
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Here, among already mentioned variables, TV; are shear and bulk viscosities, respectively (both
supposed to be constants), X is heat conductivity, Xi - space coordinates. Except ofthe dynami cal
equations (1), the two thermodynamic relations are necessary: e(p, p), T(p, p). To treat a wide
variety of tluids (both gases and liquids), let us use the most general form of these relations as
expansion in the Fourier series:

(2)

The background values are marked by zero, perturbations are primed, C, means specific heat per

unit mass at constant volume, El ,...el ,... are dimensionless coefficients:

e = POCvK e = _PoCv
I b' 2 b 'Po

(3)

l [ap) l (ap)where K=- - b=-- --
Po ap T=T(PO.PO)' Po aT p=po

The equivalent system in non-dimensional variables marked by asterisks that will be
omitted everywhere later, v=cv.,p'=c2poP., p' =PoP" x=Ą(x./~ y, z,/~),

t=t,A/C (c is adiabatic sound velocity, c= Po(J-E2) A means characteristic scale of
PoEI '

disturbance) looks as follows

(5)

Here, introducing of the small parameter ~ relates to the quasi-plane geometry. Vector

\jf = (v x V y V Z p' p'r is variabies column, vector \jJ notes nonlinear terms of the second

order that are of the most importance in acoustics, and
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is the linear matrix operator with parameters

oJ, + ~lo'= _ll_ 81 = X81 82 = X82

I PoCA' I PoCA' 2 PocACvEI' 2 PocACv(1- E2) •

Dropping the details, the linear analogue of (5) yields in five roots of the dispersion relation
<i(k) , and to the five basie types of the motion in fluid differing by the relations of components of
velocity and perturbations of pressure and density. The first two roots relate to progressive
(acoustic) modes of different direction of propagation, the third one relates to the heat (or
entropy) mode, and the last two - to the rotational one. Any field of the linear flow may be
presented as a sum of independent modes.

The next step is to get projectors that decompose a concrete mode from the overall field.
Since calculations are rather complicated in the three-dimensional geometry of the flow, a reader
is referred for more details to [7,8]. Finally, five matrix projectors follow that decompose the
overall field into the concrete type of the motion.

(7)

The achievement of the modern theory is an expansion of the method into the area of
nonlinear flow. AU possible interactions between modes are predictable by acting of the
corresponding projector at the initial nonlinear system of equations (5). To investigate a
dynamics of the thermallayer, it is enough to act by the matrix projector relating to the entropy
mode at the system when in the nonlinear vectors inputs of the progressive acoustic mode are
given rise. As a result, an equation for the rate of density decrease in the thermallens Pl looks:
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-(N +N +l)p Opl +~(NI +N2+1)p a2
PI +(8 (N +1)-8 fE (OpI)2 (8)

I 2 I ay 2 I ay2 2 I I I ay

Here, ~ means a sum of attenuation coefficients ~ = 8: + 8~ + 8~ + 8;, constants N I' N 2 are as
follows:

In the case of the perfect gas that will be considered for simplicity,
El = (y -lrl ,NI = -y, N 2 = O, and (8) goes to thefollowing:

~_iL a2

p, =(Y-1)[P Opl _~p a
2

PI -~(OpI)2l.at y -l ay2 I ay 2 I ay2 ay (9)

In the equation (9), only the main terms are given rise, nonlinear ones multiplied by viscous
coefficient though there are cross-nonlinear term s of order ~.Jf;. It may be easily shown that for
the plane periodic acoustic source formula goes to the well-known one discussed in introduction.

2. ILLUSTRA TIONS ON THE THERMAL LEN S CAUSED BY DIFFRACTING BEAM

As an acoustic source, let us take a pressure wave in the diffracting beam as follows:

( ) Po ( r
2

~ .)P x Y z t =--exp -----y-n +cc
I '" 1- iZ 1+ Z2 2 '

(10)

where r = ~X 2 + Z2 ,L = (211t ,Z = Y f L, L being dimensionless length of diffraction. That is
the well-known analytical solution for the linear diffracting beam [3].

After numerical integration of (9) (the term -~ a2p

2
, is usually omitted), the temperature

y-l ay
field may be reconstructed due to the formula:

~T(x,y,z,t) -f~,.
To o a, (11)

Illustrations on the delicate temporai structure of the thermallens are presented by the figures 1-4
for the chosen set of constants: 11 = 0.1,~ = 0.1, y = lA .P, = 0.1.
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Fig.2 10·,-1T / To via r at y=!, t=20 (upper
curve), t=2 (middle curve), t=l
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Fig.3 10·,-1T / To via t at y=5 (focallength) , r=O. Fig.4 10·,-1T/To via raty=5, t=20
(upper curve), t=2 (middle curve), t=1.

As a conclusion, it should be noted that a wide variety of acoustic sources could be treated
including impulse ones that are of special important in some applications of medicine and
techniques. Forming ofthe thermallenses both in gases and liquids may be calculated.
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