PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of flame propagation in small adiabatic tubes characterized by different degrees of the end opening

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, we study numerically freely propagating flame in the stoichiometric propane-air mixture. The adiabatic small tubes with one end fully open and the second one characterized by different degrees of opening are examined. The degree of opening of the tubes was equal to: 0% (completely closed), 25%, 50%, 75% and 100% (fully opened) of the tube cross-sectional area. Several mechanisms, such as thermal expansion of the burned gas that can leave the tube freely (fully opened left end of the tube), frictional forces and movement of the unburned mixture generated by a pressure gradient, occur simultaneously during flame propagation. As a result, a nearlyexponential dependence of flame propagation speed as a function of time is observed. For fully open right end (100%), normalized flame speed reaches about 75-80 at the end of the tubes. By partially closing the right end, this effect is delayed and reduced - for 25% of the opening normalized flame speed is about 20 for all tube diameters.
Rocznik
Strony
32--38
Opis fizyczny
Bibliogr. 21 poz., il. kolor., rys., wykr.
Twórcy
  • Lodz University of Technology, Institute of Turbomachinery, Łódź, Poland
  • Lodz University of Technology, Institute of Turbomachinery, Łódź, Poland
Bibliografia
  • [1] Mason W. and Wheeler R. V.: The Propagation of Flame in Mixtures of Methane and Air. Part I. Horizontal Propagation. Journal of Chemical Society Transactions, 117, 36-47, 1920.
  • [2] Guénoche G. in: Markstein G.: Non-steady Flame Propagation, Pergamon Press, Macmillan Company, Chapter E, 107-181, New York, 1964.
  • [3] Aly S. L., Simpson R. B. and Hermance C. E.: Numerical Solution of the Two-Dimensional Premixed Laminar Flame Equations, AIAA Journal, 17(1), 56, 1979.
  • [4] Aly S. L. and Hermance C. E.: A Two-Dimensional Theory of Laminar Flame Quenching, Combustion and Flame, 40, 173-185, 1981.
  • [5] Lee S. T. and Tsai C. H.: Numerical Investigation of Steady Laminar Flame Propagation in a Circular Tube, Combustion and Flame, 99, 484-490, 1994.
  • [6] Hackert C. L., Ellzey J. L. and Ezekoye O. A.: Effect of Thermal Boundary Conditions on Flame Shape and Quenching in Ducts, Combustion and Flame, 112, 73-84, 1998.
  • [7] Deng H. et al.: Numerical Investigation of Premixed Methane-Air Flame in Two-Dimensional Half Open Tube in the Early Stages, Fuel, 272, 1-11, 2020.
  • [8] Alkhabbaz M. et al.: Impact of the Lewis Number on Finger Flame Acceleration at the Early Stage of Burning in Channels and Tubes, Physics of Fluids, 31, 2019.
  • [9] Bi M., Dong C., Zhou Y.: Numerical Simulation of Premixed Methane-Air Deflagration in Large L/D Closed Pipes, Applied Thermal Engineering, 40, 337-342, 2012.
  • [10] Xiao H. et al.: Experimental and numerical investigation of premixed flame propagation with distorted tulip shape in a closed duct, Combustion and Flame, V. 159, 1523-1538, 2012.
  • [11] Kim N. I. and Maruta K.: A Numerical Study on Propagation of Premixed Flame in Small Tubes, Combustion and Flame, 146, 283-30, 2006.
  • [12] Akram M., Kumar S.: Experimental Studies on Dynamics of Methane-Air Premixed Flame in Meso-Scale Diverging Channels, Combustion and Flame, 158, 915-924, 2011.
  • [13] Jarosinski J., Podfilipski J. and Fodemski T.: Properties of Flames Propagating in Propane-Air Mixtures Near Flammability and Quenching Limits, Combustion Science and Technology, 174, 167-187, 2002.
  • [14] Gutkowski A.: Laminar Burning Velocity Under Quenching Conditions for Propane-Air and Ethylene-Air Flames, Archivum Combustionis, 26, 163-173, 2006.
  • [15] Kurdyumov V. N., Matalon M.: Flame Acceleration in Long Narrow Open Channels, Proceedings of the Combustion Institute, 34, 865-872, 2013.
  • [16] MasonW. and Wheeler R. V.: The Propagation of Flame in Mixtures of Methane and Air. Part I. Horizontal Propagation, Journal of Chemical Society Transactions, 117, 36-47, 1920.
  • [17] Kurdyumov V. N., Matalon M.: Self-Accelerating Flames in Long Narrow Open Channels, Proceedings of the Combustion Institute, 35, 921-928, 2015.
  • [18] Westbrook C. K. and Dryer F. L.: Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames, Combustion Science and Technology, 27, 31, 1981.
  • [19] Law C. K.: Combustion Physics, New York, Cambridge University Press, 2006.
  • [20] Patankar S.V.: Numerical Heat Transfer and Fluid Flow, New York, McGraw-Hill, 1980.
  • [21] van Doormaat J. P. and Raithby G. D.: Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows, Numerical Heat Transfer, 7, 147, 1984.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55c832f2-80e7-42c8-8d77-0e02f23a59d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.