Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A method to analyze self-affinities is introduced and applied to the large scale fold geometries of Quaternary and Tertiary sediments or geographical topographies in the inner belt of the Northeast Honshu Arc, Japan. Based on this analysis, their geometries are self-affine and can be differently scaled in different directions. We recognize a crossover from local to global altitude (vertical) variation of the geometries of folds and topographies. The characteristic length for the crossover of topographies (landforms) is about 25 km and is related to the half wavelength of the crustal buckling folds or possible maximum magnitude of inland earthquakes in the Northeast Honshu Arc. Moreover, self-affinity of the folds and topographies can be connected with the b-value in Gutenberg-Richter℉s law. We obtain two average Hurst exponents obtained from the self-affinities of folds in the Northeast Honshu Arc. This indicates that there are two possible seismic modes for the smaller and larger ranges in the focal regions in the Northeast Honshu Arc.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1642--1658
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
autor
- Forestry and Fisheries Department, Yamagata Prefectural Government, Yamagata, Japan
autor
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
autor
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
autor
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, Japan
Bibliografia
- 1. Biot, M.A. (1961), Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis, Geol. Soc. Am. Bull. 72,11, 1595-1620, DOI: 10.1130/0016-7606(1961)72[1595:TOFOSV]2.0.CO;2.
- 2. Feder, J. (1988), Fractals, Plenum Press, New York.
- 3. Gutenberg, B., and C.F. Richter (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34,4, 185-188.
- 4. Hunt, G., H. Mühlhaus, B. Hobbs, and A. Ord (1996), Localized folding of viscoelastic layers, Geol. Rundsch. 85,1, 58-64, DOI: 10.1007/BF00192061.
- 5. Kitamura, N. (ed.) (1986), Cenozoic Arc Terrane of Northeast Honshu, Japan, Hobundo, Sendai (in Japanese).
- 6. Kitazato, H. (1971), Harmonic analysis of the geological structure. In: 5th Annual Meeting of the Geological Society of Japan, Kyushu University, Japan, abstract, p. 390 (in Japanese).
- 7. Korvin, G. (1992), Fractal Models in the Earth Sciences, Elsevier, Amsterdam.
- 8. Kulik, D.A., and M.I. Chernovsky (1996), Fractal properties of multi-order folding as a tool for exploration of low-grade banded iron ores in the Krivoy Rog Basin (Ukraine), Geol. Rundsch. 85,1, 3-11, DOI: 10.1007/BF00192054.
- 9. Malinverno, A. (1989), Testing linear models of sea-floor topography, Pure Appl. Geophys. 131,1-2, 139-155, DOI: 10.1007/BF00874484.
- 10. Malinverno, A. (1990), A simple method to estimate the fractal dimension of a selfaffine series, Geophys. Res. Lett. 17,11, 1953-1956, DOI: 10.1029/GL017i 011p01953.
- 11. Mandelbrot, B.B. (1977), Fractals: Form, Chance, and Dimension, W.H. Freeman, San Francisco.
- 12. Mandelbrot, B.B. (1982), The Fractal Geometry of Nature, W.H. Freeman, New York.
- 13. Mareschal, J.-C. (1989), Fractal reconstruction of sea-floor topography, Pure Appl. Geophys. 131,1-2, 197-210, DOI: 10.1007/BF00874487.
- 14. Matsuda, T. (1990), Seismic zoning map of Japanese Islands, with maximum magnitudes derived from active fault data, Bull. Earthq. Res. Inst., Univ. Tokyo 65, 289-314 (in Japanese with English abstract).
- 15. Matsushita, M., and S. Ouchi (1989a), On the self-affinity of various curves, Physica D 38,1-3, 246-251, DOI: 10.1016/0167-2789(89)90201-7.
- 16. Matsushita, M., and S. Ouchi (1989b), On the self-affinity of various curves, J. Phys. Soc. Jpn. 58,5, 1489-1492, DOI: 10.1143/JPSJ.58.1489.
- 17. Miyamura, S. (1962), Seismicity and geotectonics, Zisin (J. Seismol. Soc. Jpn.) 15, 23-52 (in Japanese with English abstract).
- 18. Mizoue, M. (1980), Tectonic stress and viscosity coefficient of the Earth’s crust as inferred from crustal movements related with active folds, Bull. Earthq. Res. Inst., Univ. Tokyo 55, 483-504 (in Japanese with English abstract).
- 19. Mogi, K. (1963), Magnitude-frequency relation for elastic shocks accompanying fractures of various materials and some related problems in earthquakes (2nd paper), Bull. Earthq. Res. Inst., Univ. Tokyo 40,4, 831-853.
- 20. Mogi, K. (1964), Some discussions on the earthquake occurrence from the standpoint of fracture theory, Chikyu Kagaku (Earth Science) 73, 28-34 (in Japanese with English abstract).
- 21. Nagahama, H. (1991), Fracturing in the solid Earth, Sci. Rep. Tohoku Univ., 2nd Ser. Geology 61,2, 103-126.
- 22. Nagahama, H. (1994), Self-affine growth pattern of earthquake rupture zones, Pure Appl. Geophys. 142,2, 263-271, DOI: 10.1007/BF00879303.
- 23. Nagahama, H. (1998), Fractal structural geology, Mem. Geol. Soc. Jpn. 50, 13-19.
- 24. Nagahama, H. (2000), Fractal scalings of rock fragmentation, Earth Sci. Frontiers 7,1, 169-177.
- 25. Nagahama, H., and R. Teisseyre (2000), Micromorphic continuum and fractal fracturing in the lithosphere, Pure Appl. Geophys. 157,4, 559-574, DOI: 10.1007/PL00001107.
- 26. Nagumo, S. (1969a), A derivation of Ishimoto-Iida’s formula for the frequency distribution of earthquakes from a deformation fracture relation, Zisin (J. Seismol. Soc. Jpn.) 22, 136-143 (in Japanese with English abstract).
- 27. Nagumo, S. (1969b), Deformation∼fracture relation in earthquake genesis and derivation of frequency distribution of earthquakes, Bull. Earthq. Res. Inst., Univ. Tokyo 47,6, 1015-1027.
- 28. Ord, A. (1994), The fractal geometry of patterned structures in numerical models of rock deformation. In: J.H. Kruhl (ed.), Fractals and Dynamical Systems in Geoscience, Springer, Berlin, 131-155.
- 29. Otsuki, K. (1995), Why is the crustal shortening of northeast Honshu arc larger in the backarc than around the volcanic front? J. Geol. Soc. Jpn. 101,2, 179-182 (in Japanese).
- 30. Otuka, Y. (1933), Contraction of the Japanese islands since the Middle Neogene, Bull. Earthq. Res. Inst., Univ. Tokyo 11, 724-731.
- 31. Ouchi, S. (1990), Self-affinity of landform and its measurement, Geogr. Rep. Tokyo Metropolitan Univ. 25, 67-79.
- 32. Peitgen, H.O., and D. Saupe (eds.) (1988), The Science of Fractal Images, Springer, Berlin.
- 33. Power, W.L., T.E. Tullis, S.R. Brown, G.N. Boitnott, and C.H. Scholz (1987), Roughness of natural fault surfaces, Geophys. Res. Lett. 14,1, 29-32, DOI: 10.1029/GL014i001p00029.
- 34. Sato, H. (1989), Degree of deformation of late Cenozoic strata in the Northeast Honshu Arc, Mem. Geol. Soc. Jpn. 32, 257-268 (in Japanese with English abstract).
- 35. Sato, H. (1994), The relationship between Late Cenozoic tectonic events and stress field and basin development in northeast Japan, J. Geophys. Res. 99,B11, 22261-22274, DOI: 10.1029/94JB00854.
- 36. Scholz, C.H., and C.A. Aviles (1986), The fractal geometry of faults and faulting. In: S. Das, J. Boatwright, and C.H. Scholz (eds.), Earthquake Source Mechanics, Maurice Ewing Series, Vol. 6, Geophysical Monography 37, AGU, Washington, D.C., 147-155, DOI: 10.1029/GM037p0147.
- 37. Seno, T., S. Stein, and A.E. Gripp (1993), A model for the motion of the Philippine Sea Plate consistent with NUVEL-1 and geological data, J. Geophys. Res. 98,B10, 17941-17948, DOI: 10.1029/93JB00782.
- 38. The Research Group for Active Faults of Japan (1991), Active Faults in Japan, Sheet Map and Inventories, revised ed., University of Tokyo Press, Tokyo, 437 pp. (in Japanese with English abstract).
- 39. Tsuboi, C. (1956), Earthquake energy, earthquake volume, aftershock area, and strength of the earth’s crust, J. Physics Earth 4,2, 63-66, DOI: 10.4294/jpe1952.4.63.
- 40. Turcotte, D.L. (1992), Fractals and Chaos in Geology and Geophysics, Cambridge University Press, Cambridge.
- 41. Uemura, T. (1989), Deformation facies and its indicator of the Cenozoic system in the Northeast Hoshu Arc, Japan, Mem. Geol Soc. Jpn. 32,3, 269-279 (in Japanese with English abstract).
- 42. Wilson, T.H. (2000), Some distinctions between self-similar and self-affine estimates of fractal dimension with case history, Math. Geol. 32,3, 319-335, DOI: 10.1023/A:1007585811281.
- 43. Wilson, T.H., and J. Dominic (1998), Fractal interrelationships between topography and structure, Earth Surf. Process. Landforms 23,6, 509-525, DOI: 10.1002/(SICI)1096-9837(199806)23:6〈509::AID-ESP864〉3.0.CO;2-D.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55bf61f1-87aa-4b2d-8133-6ec0d831a3bd