PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Method validation for the determination of fraction of modern (F14C) in wood samples using conventional method

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The radiocarbon laboratory at the Lebanese Atomic Energy Commission is undertaking environmental studies, in order to determine the anthropogenic impact of technologies on the ecosystem through the determination of radiocarbon content in tree leaves and plants. Thus, it was important to validate the method used to demonstrate that the applied procedure gives reliable results. Method validation is universally applied in analytical laboratories as an essential part of quality assurance system and as a basic technical requirement of the ISO 17025 standard. The conventional method used for determination of Fraction Modern (F14C) is a standard method issued by the American Society for Testing and Materials in 2011 with a code ASTM-D 6866-11 Method C. According to Eurachem guide, internal validation was expressed in terms of accuracy that was evaluated by trueness and precision. Trueness was expressed in terms of relative bias, while for precision ten consecutive replicates were carried out to under repeatability conditions and five duplicates were analyzed under reproducibility conditions. The limit of detection and the minimum detectable activity (MDA) were calculated. Uncertainty sources were defined and their relative standard uncertainties were calculated in order to determine the combined standard uncertainty. Five reference samples of different matrices were analyzed; calculated z score values were acceptable as being between –2 and +2. The calculation and results are presented in this work.
Wydawca
Czasopismo
Rocznik
Strony
68--73
Opis fizyczny
Bibliogr 35. poz., rys.
Twórcy
autor
  • Lebanese Atomic Energy Commission – National Council for Scientific Research, Beirut, Lebanon
autor
  • Lebanese Atomic Energy Commission – National Council for Scientific Research, Beirut, Lebanon
autor
  • Lebanese Atomic Energy Commission – National Council for Scientific Research, Beirut, Lebanon
autor
  • Beirut Arab University – Faculty of Sciences – Chemistry Department, Beirut, Lebanon
Bibliografia
  • 1. Ahmad Z, Yii MW and Ishak AK, 2007. In: Validation procedures of software applied in nuclear instruments, IAEA-TECDOC-1565. International Atomic Energy Agency, Vienna, Austria.
  • 2. ASTM, D 6866-11, 2011: Standard test methods for determining the biobased content of solid, liquid, and gaseous samples using radiocarbon analysis. Pennsylvania, United States.
  • 3. Barker H, 1953. Radiocarbon dating: large-scale preparation of acetylene from organic material. Nature 4379: 631–632.
  • 4. Battipaglia G, Marzaioli F, Lubritto C, Altieri S, Strumia S, Cherubini P and Cotrufo MF, 2010. Traffic pollution affects tree-ring width and isotopic composition of Pinus pinea. Science of the Total Environment 408: 586–593.
  • 5. Baydoun R, El Samad O, Aoun M, Nsouli B and Younes G, 2014. Setup, optimization and first set of samples at the Radiocarbon Laboratory in Lebanon. Geochronometria 41: 87–91.
  • 6. Beramendi-Orosco LE, Gonzalez-Hernandez G, Urrutia-Fucugauchi J and Morton-Bermea O, 2006. Radiocarbon Laboratory at the National Autonomous University of Mexico: First set of samples and new 14C internal reference material. Radiocarbon 48 (3): 485–491.
  • 7. Bronić IK, Horvatincic N, Baresic J and Obelic B, 2009. Measurement of 14C activity by liquid scintillation counting.Applied Radiation and Isotopes 67: 800–804.
  • 8. Bronić IK, Obelic B, Horvatincic N, Baresic J, Sironic A and Minichreiter K, 2010. Radiocarbon application in environmental science and archaeology in Croatia. Nuclear Instruments and Methods in Physics Research A619: 491–496.
  • 9. Burchuladze AA, Pagava SV, Povinec P, Togonidze GI and UsaËev S, 1980. Radiocarbon variations with the 11-year solar cycle during the last century. Nature 287(5780): 320–322.
  • 10. Canducci C, Bartolomei P, Magnani G, Rizzo A, Piccoli A, Tositti L, Esposito M, 2013. Upgrade of the CO2direct absorption method for low-level 14C liquid scintillation counting. Radiocarbon 55(2): 260–267.
  • 11. Edler R, 2009. LSC 2008-in: Advances in Liquid scintillation spectroscopy. The use of liquid scintillation counting technology for the determination of biogenic materials. 261–267.
  • 12. Godwin H, 1962. Half-life of radiocarbon. Nature195: 984.
  • 13. GUM, 1993. Evaluation of measurement data-Guide to the expression to uncertainty in measurement.
  • 14. Herranz M, Idoeta R and Legarda F, 2008. Evaluation of uncertainty and detection limits in radioactivity measurements.Nuclear Instruments and Methods in Physics Research A595: 526–534.
  • 15. Hoque MA and Burgess WG, 2012. 14C dating of deep groundwater in the Bengal Aquifer System, Bangladesh: Implications for aquifer anisotropy, recharge sources and sustainability. Journal of Hydrology 444–445: 209–220.
  • 16. Lal D and Peters B, 1967. Cosmic-ray produced radioactivity on the earth. In: Flügge S, editor. Encyclopaedia of Physics45(2). Berlin: Springer Verlag. 551–612.
  • 17. L’Annunziata MF, 2003. Handbook of radioactivity analysis, second edition, vol.2, Elsevier, USA.
  • 18. L’Annunziata MF and Kessler MJ, 2012. In: Liquid scintillation analysis: principles and practices. Handbook of radioactivity analysis, third ed., Elsevier, USA, 423–575
  • 19. Magnusson B and Ornemark U, 2014. Eurachem Guide: The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics, second ed.
  • 20. Marzaioli F, Fiumano V, Capano M, Passariello I, Cesare NDe and Terrasi F, 2011. Forensic applications of 14C at CIRCE.Nuclear Instruments and Methods in Physics Research B269: 3171–3175.
  • 21. Mazeika J, Petrosius R and Pukiene R, 2008. Carbon-14 in tree rings and other terrestrial samples in the vicinity of Ignalina Nuclear Power Plant, Lithuania. Journal of Environmental Radioactivity 99: 238–247.
  • 22. Muraki Y, Masua K, Arslano V, Toyoizumi H, Kato M, Naruse Y, Murata T and Nishiyama T, 2001. Measurement of radiocarbon content in leaves from some Japanese sites. Radiocarbon 43(2B): 695–701.
  • 23. Nakata K, Kodama H, Hasegawa T, Hama K, Lwatsuki T and Miyajima T, 2013. Groundwater dating using radiocarbon in fulvic acid in groundwater containing fluorescein. Journal of Hydrology 489: 189–200.
  • 24. Olsen J, Heinemeier J, Hornstrup KM, Bennike P and Thrane H, 2013. “Old wood” effect in radiocarbon dating of prehistoric cremated bones? Journal of Archaeological Science 40(1): 30–34.
  • 25. Passo Jr CJ and Cook GT, 1994. Handbook of environmental liquid scintillation spectrometry. Packard Instrument Company. Meriden CT06450, USA.
  • 26. QuantaSmart™) for Tr-Carb(R)Liquid Scintillation Analyzers (Models 2810TR, 2910TR, 3110TR, and 3180TR/SL. Perkin Elmer, Manual Recorder Number 1694316. USA, 2008.
  • 27. Rakowski AZ, Nadeau MJ, Nakamura T, Pazdur A, Pawelczyk S and Piotrowska N, 2013. Radiocarbon method in environmental monitoring CO2emission. Nuclear Instruments and Methods in Physics Research B294: 503–507.
  • 28. Reimer PJ, Brown TA and Reimer RW, 2004. Discussion: Reporting and calibration of post-bomb 14C data. Radiocarbon 46(3): 1299–1304.
  • 29. Różański K, Stichler W, Gonfianti R, Scott EM, Beukens RP, Kromer B and Vander Plitch J, 1992. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3): 506–519.
  • 30. Scott EM, Cook GT and Naysmith P, 2007. Error and uncertainty in radiocarbon measurements. Radiocarbon 49(2): 427–440.
  • 31. Scott EM, Cook GT and Naysmith P, 2010. The Fifth International Radiocarbon Intercomparison (VIRI): An assessment of laboratory performance in stage 3. Radiocarbon 52(2–3): 859–865.
  • 32. Sironić A, Bronić IK, Haorvantinčić N, Baresić J, Obelić B and Felja I, 2013. Status report on the Zagreb radiocarbon laboratory-AMS and LSC results of VIRI intercomparison samples. Nuclear Instruments and Methods in Physics research B294: 185–188.
  • 33. Tamers MA, 1975. Chemical yield optimization of the benzene synthesis for radiocarbon dating. International Journal of Applied Radiation and Isotopes 26: 676–682.
  • 34. Taverniers I, De Loose M, Bockstaele EV, 2004. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends in Analytical Chemistry 23(8): 535–552.
  • 35. Thompson M, Ellison SLR and Wood R, 2002. Harmonized guidelines for single-laboratory validation of methods of analysis IUPAC Technical Report. Pure Applied Chemistry 74(5): 835–855.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55bd5c8d-0f39-455c-8702-168cd2305b3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.