PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping of Cornfield Soil Salinity in Arid and Semi-Arid Regions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Soil salinization and their annual increase in volume is not only one of the main problems of arid and subarid regions, but it is becoming global. Studying the problem of salinization and its spatial distribution using operational remote sensing methods is very important for Kazakhstan, where almost half of the agricultural land is exposed to salinization, but it is at the initial stage of development in the use of space technologies of research. The main goal of this study is to conduct a field study of soil salinity in corn fields, one of the most common crops in the arid region of the country, located in the Shaulder irrigated massif, using space-based methods, and to create algorithms for compiling a salinity map based on remote sensing data. For this purpose, firstly, using Sentinel-2 images, the method of separating corn from other dominant crops in the region by creating NDVI dynamics covering all phases of growth of agricultural crops was shown. Then, a regression analysis was performed on soil and vegetation indices calculated using satellite images and data on soil salinity obtained through field studies. As a result of the analysis, the main predictor of deciphering salinized soils was determined. By dividing the predictive image into quartiles, contours of salinized soils were determined and a soil salinity map was created. With the help of the soil salinity map, it was found that, non-saline soils – 2912.2 ha; slightly saline soils – 3288.4 ha, moderately saline soils – 2615.2 ha, and strongly saline soils – 1284.3 ha in the study area.
Rocznik
Strony
146--158
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Abai Kazakh National Pedagogical University, Dostyk Ave 13, 050010 Almaty, Kazakhstan
  • U.U. Uspanov Kazakh Research Institute of Soil Science and Agrochemistry, 050060 Almaty, Kazakhstan
  • Abai Kazakh National Pedagogical University, Dostyk Ave 13, 050010 Almaty, Kazakhstan
  • Abai Kazakh National Pedagogical University, Dostyk Ave 13, 050010 Almaty, Kazakhstan
  • U.U. Uspanov Kazakh Research Institute of Soil Science and Agrochemistry, 050060 Almaty, Kazakhstan
  • Abai Kazakh National Pedagogical University, Dostyk Ave 13, 050010 Almaty, Kazakhstan
  • U.U. Uspanov Kazakh Research Institute of Soil Science and Agrochemistry, 050060 Almaty, Kazakhstan
  • Kazakh National Women’s Teacher Training University, 050000 Almaty, Kazakhstan
Bibliografia
  • 1. Abbas, A., Khan, S., Hussain, N., Hanjra, M.A., Akbar, S. 2013. Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and chemistry of the Earth, Parts A/B/C, 55, 43–52. https://doi.org/10.1016/j.pce.2010.12.004
  • 2. Akramkhanov, A., Martius, C., Park, S.J., Hendrickx, J.M.H. 2011. Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma, 163(1–2), 55–62. https://doi.org/10.1016/j.geoderma.2011.04.001
  • 3. Alharbi, S., Raun, W.R., Arnall, D.B., Zhang, H. 2019. Prediction of maize (Zea mays L.) population using normalized-difference vegetative index (NDVI) and coefficient of variation (CV). Journal of Plant Nutrition, 42(6), 673–679. https://doi.org/10.1080/01904167.2019.1568465
  • 4. Allison, L.E. 1954. Diagnosis and improvement of saline and alkali soils. Soil Science, 78(2), 154.
  • 5. Bernstein, L. 1974. Crop growth and salinity. Drainage for agriculture, 17, 39–54. https://doi.org/10.2134/agronmonogr17.c3
  • 6. Darwish, K.M., Kotb, M.M., Ali, R. 2007. Mapping soil salinity using collocated cokriging in Bayariya, Oasis, Egypt. In: Proceedings of the 5th International Symposium on Spatial Data Quality. ITC Enschede, The Netherlands, 13–15.
  • 7. Das, R.S., Rahman, M., Sufian, N.P., Rahman, S.M.A., Siddique, M.A.M. 2020. Assessment of soil salinity in the accreted and non-accreted land and its implication on the agricultural aspects of the Noakhali coastal region, Bangladesh. Heliyon, 6(9), e04926. https://doi.org/10.1016/j.heliyon.2020.e04926
  • 8. DBNSASPRRKTR. 2020. Agriculture, forestry and fisheries of the Turkestan region. Department of the Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan for the Turkestan region. https://stat.gov.kz/region/20243032/statistical_information/publication
  • 9. Ding, J., Yu, D. 2014. Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan–Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma, 235, 316–322. https://doi.org/10.1016/j.geoderma.2014.07.028
  • 10. Duisekov, S., Otarov, A., Kaldybaev, S., Poshanov, M., Laiskhanov, S. 2015. The Operational Method of Conducting Large-Scale Salt Survey and Drawing Salinity Level Maps of Irrigated Lands of the Akdalinsky Array. Biosciences, Biotechnology Research Asia, 12, 547–557. http://dx.doi.org/10.13005/bbra/2232
  • 11. Gebremeskel, G., Gebremicael, T.G., Hagos, H., Gebremedhin, T., Kifle, M. 2018. Farmers’ perception towards the challenges and determinant factors in the adoption of drip irrigation in the semi-arid areas of Tigray, Ethiopia. Sustainable Water Resources Management, 4(3), 527–537. https://doi.org/10.1007/s40899-017-0137-0
  • 12. Ghazali, M.F., Wikantika, K., Harto, A.B., Kondoh, A. 2020. Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis. Information Processing in Agriculture, 7(2), 294–306. https://doi.org/10.1016/j.inpa.2019.08.003
  • 13. Huete, A.R. 1988. A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
  • 14. Ivushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Kempen, B., De Sousa, L. 2019. Global mapping of soil salinity change. Remote sensing of environment, 231, 111260. https://doi.org/10.1016/j.rse.2019.111260
  • 15. Jin, Z., Xu, B. 2013. A novel compound smoother—RMMEH to reconstruct MODIS NDVI time series. IEEE Geoscience and Remote Sensing Letters, 10(4), 942–946. https://doi.org/10.1109/LGRS.2013.2253760
  • 16. Khan, S., Abbas, A. 2007. Using remote sensing techniques for appraisal of irrigated soil salinity. Int. Congr. Model. Simul. (MODSIM), Model. Simul. Soc. Aust. New Zealand, Bright, (January), 2632–2638.
  • 17. Laiskhanov, S.U., Poshanov, M.N., Smanov, Z.M., Karmenova, N.N., Tleubergenova, K.A., Ashimov, T.A. 2021. A Study of the Processes of Desertification at the Modern Delta of the Ili River with the Application of Remote Sensing Data. Journal of Ecological Engineering, 22(3), 169–178. https://doi.org/10.12911/22998993/132546
  • 18. Laiskhanov, S.U., Smanov, Z.M., Kaimuldinova, K.D., Myrzaly, N.B., Ussenov, N.E., Poshanov, M.N., Azimkhanov, B. 2022. A Study of the Effects of Soil Salinity on the Growth and Development of Maize (Zea Mays L.) by using Sentinel-2 Imagery. OnLine Journal of Biological Sciences, 22(3), 323–332. https://doi.org/10.3844/ojbsci.2022.323.332
  • 19. Lambin, E.F., Ehrlich, D. 1996. The surface temperature-vegetation index space for land cover and land-cover change analysis. International journal of remote sensing, 17(3), 463–487. https://doi.org/10.1080/01431169608949021
  • 20. Li, H., Liu, X., Hu, B., Biswas, A., Jiang, Q., Liu, W., Peng, J. 2020. Field-scale characterization of spatio-temporal variability of soil salinity in three dimensions. Remote Sensing, 12(24), 4043. https://doi.org/10.3390/rs12244043
  • 21. Liu, H.Q., Huete, A. 1995. A feedback-based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE transactions on geoscience and remote sensing, 33(2), 457–465. https://doi.org/10.1109/TGRS.1995.8746027
  • 22. Masoud, A.A., Koike, K. 2006. Arid land salinization detected by remotely-sensed landcover changes: A case study in the Siwa region, NW Egypt. Journal of arid environments, 66(1), 151–167. https://doi.org/10.1016/j.jaridenv.2005.10.011
  • 23. Mmolawa, K., Or, D. 2000. Root zone solute dynamics under drip irrigation: A review. Plant and soil, 222(1), 163–190. https://doi.org/10.1023/A:1004756832038
  • 24. OTYRAR. 2005. Encyclopedia. Almaty, Arys, 456 p.
  • 25. Pachikin, K., Erokhina, O., Funakawa, S. 2014. Soils of Kazakhstan, their distribution and mapping. In: Novel Measurement and Assessment Tools for Monitoring and Management of Land and Water Resources in Agricultural Landscapes of Central Asia. Springer, Cham, 519–533. https://doi.org/10.1007/978-3-319-01017-5_32
  • 26. Poshanov, M.N., Laiskhanov, S.U., Smanov, Z.M., Kenenbayev, S.B., Aliaskarov, D.T., Abikbayev, Y.R., Vyrakhmanov, A.S., Askanbek, A. 2022. The Effects of the Degree of Soil Salinity and the Bio-preparation on Productivity of Maize in the Shaulder Irrigated Massif. OnLine Journal of Biological Sciences, 22(1), 58–67. https://doi.org/10.3844/ojbsci.2022.58.67
  • 27. Rhoades, J.D., Chanduvi, F., Lesch, S.M. 1999. Soil salinity assessment: methods and interpretation of electrical conductivity measurements. Food and Agriculture Organization of the United Nations, 57. https://agris.fao.org/agris-search/search.do?recordID=XF2000389201
  • 28. Segarra, J., Buchaillot, M.L., Araus, J.L., Kefauver, S.C. 2020. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641. https://doi.org/10.3390/agronomy10050641
  • 29. Shahid, S.A., Zaman, M., Heng, L. 2018. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques. Springer, Cham, 43–53. https://doi.org/10.1007/978-3-319-96190-3_2
  • 30. Shrestha, D.P., Farshad, A. 2009. Mapping salinity hazard: an integration application of remote sensing and modeling-based techniques. In: A.J. Zinck, G. Metternich (Eds.), Remote sensing of soil salinization: impact on land management. CRC Press, Baton Rouge, 257–272.
  • 31. Shrivastava, P., Kumar, R. 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi journal of biological sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • 32. Singh, A. 2021. Soil salinization management for sustainable development: A review. Journal of environmental management, 277, 111383. https://doi.org/10.1016/j.jenvman.2020.111383
  • 33. Singh, A. 2021. Soil salinization management for sustainable development: A review. Journal of Environmental Management, 277, 111383. https://doi.org/10.1016/j.jenvman.2020.111383
  • 34. Suska-Malawska, M., Vyrakhamanova, A., Ibraeva, M., Poshanov, M., Sulwiński, M., Toderich, K., Mętrak, M. 2022. Spatial and In-Depth Distribution of Soil Salinity and Heavy Metals (Pb, Zn, Cd, Ni, Cu) in Arable Irrigated Soils in Southern Kazakhstan. Agronomy, 12(5), 1207. https://doi.org/10.3390/agronomy12051207
  • 35. Taghadosi, M.M., Hasanlou, M., Eftekhari, K. 2019. Retrieval of soil salinity from Sentinel-2 multispectral imagery. European Journal of Remote Sensing, 52(1), 138–154. https://doi.org/10.1080/22797254.2019.1571870
  • 36. Tokbergenova, A., Kiyassova, L., Kairova, S. 2018. Sustainable Development Agriculture in the Republic of Kazakhstan. Polish Journal of Environmental Studies, 27(5), 1923–1933 https://doi.org/10.15244/pjoes/78617
  • 37. Varennikov, V.M., Gubin, E.I., Kotlyarov, V.N., Tazhmagambetov, T.K. 1995. Instructions for conducting large-scale soil surveys of the lands of the Republic of Kazakhstan, Alma-Ata.
  • 38. Aleksandrova, L.N., Naidenova, O.A. 1976. Laboratory practice in soil science. Kolos, Leningrad.
  • 39. Weng, Y., Gong, P., Zhu, Z. 2008. Soil salt content estimation in the Yellow River delta with satellite hyperspectral data. Canadian Journal of Remote Sensing, 34(3), 259–270.
  • 40. Wu, J., Vincent, B., Yang, J., Bouarfa, S., Vidal, A. 2008. Remote sensing monitoring of changes in soil salinity: a case study in Inner Mongolia, China. Sensors, 8(11), 7035–7049. https://doi.org/10.3390/s8117035
  • 41. Zhang, J., Du, D., Ji, D., Bai, Y., Jiang, W. 2020. Multivariate Analysis of Soil Salinity in a Semi-Humid Irrigated District of China: Concern about a Recent Water Project. Water, 12(8), 2104. https://doi.org/10.3390/w12082104
  • 42. Zhang, W., Ma, L., Abuduwaili, J., Ge, Y., Issanova, G., Saparov, G. 2019. Hydrochemical characteristics and irrigation suitability of surface water in the Syr Darya River, Kazakhstan. Environmental monitoring and assessment, 191(9), 1–17. https://doi.org/10.1007/s10661-019-7713-8
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-55b2c55d-a54d-4514-8269-fddbe1709770
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.